
 

 
 

Quantifying the Potential Logistic Benefits of a 
Predictive Maintenance Strategy in Offshore Wind 

Farms 
 

Márcio António Rodrigues Pedroso 

 

Thesis to obtain the Master of Science Degree in 

Energy Engineering and Management 
 

Supervisors: Prof. Ricardo Balbino Santos Pereira 
Dr. Francisco Xavier Correia da Fonseca 

 

Examination Committee 

Chairperson: Prof. Susana Isabel Carvalho Relvas 
Supervisor: Prof. Ricardo Balbino Santos Pereira 

Member of the Committee: Prof. Ângelo Manuel Palos Teixeira 

 

December 2021 



ii 
 

  



iii 
 

Dedicatory 

To my beloved grandmother, Camila Constança Pedroso.  
You never got to see me go to college. This is for you. 

 
 
 
 
 



iv 
 

  



v 
 

Acknowledgements 

Thank you to my parents, for allowing me the opportunity to take this master, and 
thank you to my brother, for his support. 

Thank you to my aunt, for always supporting me, not only to take this master, but 
throughout my life. 

Thank you to the rest of my family, and close friends, who supported me in choosing 
this path in any way. Also, thank you to my friends from IST, for riding alongside me in this 
journey, even though most of it online. 

Thank you to Instituto Superior Técnico, for accepting me into the Energy 
Engineering and Management Master course. It set a great new beginning for me and a 
milestone that will impact my rest of my life. 

Thank you to Professor Ricardo Baldino Santos Pereira, for accepting to be my 
supervisor, support, and the part he had helping me to find this dissertation theme.  

Thank you to MSc. Eng. Francisco Fonseca, for proposing me this theme, being my 
supervisor, and for the excellent availability, support, patience, and directions, throughout 
this whole journey. 

  



vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Resumo 

O presente trabalho visa quantificar os benefícios potenciais de uma estratégia de 
manutenção preditiva em parques eólicos offshore, comparando com a manutenção corretiva. 
A manutenção preditiva também é testada para cinco períodos preditivos diferentes, 
referindo-se este com quantos dias de antecedência uma falha pode ser prevista. Para 
quantificar estes benefícios, são realizadas duas análises baseadas num modelo computacional 
desenvolvido em Python para este fim, construído com uma estrutura baseada em módulos. 
Em primeiro lugar, uma análise do parque eólico avalia os potenciais benefícios logísticos que 
a manutenção preditiva pode trazer a um parque eólico. Depois, uma análise a nível de 
componentes visa quantificar estatisticamente a variabilidade dos custos totais das falhas ao 
longo do ano, para cada estratégia e subconjunto de manutenção. São também encontrados 
benefícios logísticos estatísticos nos custos totais das falhas. De um modo geral, verificam-se 
grandes diminuições de custos num período preditivo de 5 dias. Os resultados dos parques 
eólicos mostram que os custos totais mais baixos dos parques eólicos, e a maior 
disponibilidade energética, foram encontrados para um período preditivo de 20 dias. Contudo, 
estes resultados de custos totais estão próximos dos resultados do período preditivo de 10 
dias. Os resultados a nível de componentes mostram que diferentes subconjuntos têm 
benefícios logísticos diferentes, mas benefícios semelhantes são encontrados para o mesmo 
tipo de manutenção. Os benefícios do custo total das substituições dos subconjuntos variam 
de 1,4% a 3,2%, das grandes reparações de 13,3% a 19,6%, e das pequenas reparações de 
56,4% a 60,5%. 

 

Palavras-chave 

Energia Eólica Offshore, Parque Eólico Offshore, Operação & Manutenção, Manutenção 

Preditiva, Benefícios Logísticos. 
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Abstract 

The present work aims to quantify the potential benefits of a predictive maintenance 
strategy in offshore wind farms, benchmarking these benefits against corrective maintenance. 
The predictive maintenance is also tested for five different predictive periods, here referring 
to how many days ahead a failure can be predicted. To quantify these benefits, two analyses 
are performed based on a computational model developed in Python for this purpose, built 
with a module-based structure. Firstly, a wind farm analysis assesses the potential benefits 
that predictive maintenance can bring to a wind farm. Then, a component-level analysis aims 
to statistically quantify total failure costs variability throughout the year, for each 
maintenance strategy and subassembly. Statistical logistic benefits in the total failure costs 
are also found. In general, major cost decreases are found in a 5-day predictive period. Wind 
farm results show that the lowest total wind farm costs, and highest energetic availability, 
were found for a 20-day predictive period. However, these total cost results are close to the 
results from the 10-day predictive period. The component level results show that different 
subassemblies have different logistic benefits, but similar benefits are found for the same 
maintenance type. The total failure cost benefits of the subassemblies’ replacements vary 
from 1.4% to 3.2%, major repairs from 13.3% to 19.6%, and minor repairs from 56.4% to 
60.5%. 

Key Words 

Offshore Wind Energy, Offshore Wind Farm, Operation and Maintenance, Predictive 
Maintenance, Logistic Benefits. 
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Chapter 1: Introduction 

1.1 Motivation and Objectives 

Wind energy is one of the most promising sources of renewable energy. Being a clean, 
renewable, and highly abundant energy resource, onshore wind capacity has been steadily 
increasing in Europe since the 90’s [1] [2]. With this, and the total number of deployments in 
the onshore wind sector, sharp cost-reductions have been observed. Since 1991, with the first 
offshore wind farm, installed in Denmark, the wind sector has been expanding into other 
offshore environments, namely, Sweden, the Netherlands, and the UK [2]. In 2010, Europe’s 
offshore wind energy was representing about 3.5% of total installed wind capacity, growing to 
about 11.4%, in 2020 [3]. This expansion has been motivated by the several economic 
advantages such as higher and more consistent wind speeds, lower environmental and social 
impacts (visual, noise, competition for space), and the opportunity to deploy larger turbines 
to produce more electricity and reduce generation costs [4]. Such advantages have attracted 
the attention of political decision-makers, investors, and project developers in the renewable 
energy sector [5]. More recently, as offshore wind farms inevitably progressed into further 
offshore and deeper waters, pre-commercial floating wind projects such as Windfloat Atlantic 
[6] [7], Hywind Scotland [4] [6] [7] and Kincardine [7] have been making the news due to their 
achievements [8].  

Despite technological advancements in the offshore wind sector in the last decade, the 
cost of energy is still significant, frequently requiring public funding, tariffs, and other 
support mechanisms [9]. The global levelized costs of electricity (LCOE) of offshore wind 
declined by 21% from 2010 to 2018, in about USD 0.16/kWh to USD 0.13/kWh [10]. Still, to 
boost competitiveness and mass adoption, the reduction of project costs is the current 
priority in the sector. 

Operation and maintenance (O&M) is one of the most researched topics in the 
offshore wind sector, contributing greatly to the LCOE. It’s estimated that O&M costs 
represent about 23% of the total investment costs of an offshore wind project [11]. This is 
mostly due to the high challenges of maintaining wind farm assets in offshore environments. 
Offshore wind farms are deployed in harsh environmental conditions, which affect component 
reliability and maintenance requirements. Most offshore wind farms are typically deployed 
within 10-40km off the coast [5], although their distance to the O&M port may be greater. 
Due to distance from shore, weather conditions and operational constraints, there are only 
some weather windows, that are long enough, where vessels are allowed to be deployed to 
perform the maintenance actions. Therefore, operations may be delayed, leading to an 
increase in operational costs (namely due to vessel hiring) but also in the downtime of the 
wind turbines, which may lead to significant revenue losses [5]. 
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The maintenance philosophy adopted in an offshore wind project has a strong impact 
on O&M costs, downtime duration, and consequently, on wind farm availability [11]. Wind 
farm maintenance must therefore be adequate, given the high complexity of relationships 
between component repair schedules, maintenance crew logistics and, revenue opportunities 
thus, the scheduling of the maintenance is fundamental for wind farm operations [12]. 
Therefore, it’s necessary to find methods to improve wind farm maintenance strategies to 
mitigate O&M costs [12]. 

Currently, the most adopted maintenance strategy used in wind farms consists in a 
combination of preventive maintenance (PM) and corrective maintenance (CM) [12]. CM 
consists of scheduling maintenance operations as a reaction to component failure. In PM, 
maintenance is performed at fixed time intervals  in the attempt to prevent future failure 
occurrences [12]. 

However, research efforts have been directed towards predictive maintenance (PdM) 
due to its potential. In this maintenance strategy, prognostics-based methods use current and 
prognostic information of the wind turbines to predict their future component degradation. 
With this, the aim is to optimally schedule maintenance operations [13]. These are scheduled 
in times with low wind speed, where energy production is low, and times with higher site 
accessibility where environmental conditions are more suitable for the maintenance operation 
and thus, reducing delays without having the risk of an imminent failure [12]. Benefits from 
this strategy may include improvement of availability, reductions in O&M costs, and 
downtime. There’s also the chance to reduce the probability of more significative damage, 
due to maintenance being performed before the failure occurs, avoiding further damage. 

The present work aims to quantify the potential logistic benefits of PdM strategy in 
offshore wind farms, when benchmarked against CM strategy. To quantify these benefits, two 
analyses were carried out, leveraging on the computational model developed for this purpose. 
Firstly, a wind farm analysis is used to understand what are the potential logistic benefits 
that a PdM can bring to a wind farm. Then, a component-level analysis was performed, 
statistically quantifying total failure cost variability for each maintenance strategy, and 
subassembly. 

1.2 Structure of Dissertation 

This master’s dissertation is divided into five fundamental parts. Firstly, an 
introduction to the subject matter is provided in Chapter 1. Chapter 2 describes the state-of-
the-art of O&M in offshore wind projects. A brief description of existing logistic modelling 
tools applicable to offshore wind projects is provided in Chapter 3. The underlying 
methodology of the analysis carried out in this work is presented in Chapter 4, describing the 
developed modules and their functionalities. Results are presented and discussed in parallel, 
in Chapter 5. Finally, the conclusions, and future work, are presented in Chapter 6. 
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Chapter 2: Offshore Operation and Maintenance 

O&M is one of the five lifecycle stages in offshore wind projects. After commissioning, 
the O&M phase lasts throughout the entire project’s lifetime, being responsible for a 
significant fraction of the project costs [8]. These costs are estimated to represent about 23% 
of the total investment costs of an offshore wind project [11]. The lifecycle of offshore wind 
projects is shown in Figure 2.1 and can be broken down into five main phases. The O&M 
phase is highlighted in the figure. 

 
Figure 2.1. Five stages of an offshore wind farm. Source: [8]. 

The O&M of offshore wind farms is facing decision optimization and engineering 
challenges. These challenges include the large scale of turbines that imply large components, 
long logistic delays, expensive setup costs, restricted and random maintenance operation 
windows due to weather conditions, and limited reliability-oriented field data [1]. To 
overcome the challenges mentioned before, it is important to use appropriate maintenance 
strategies to restore the wind turbines back to “full health”, which includes decision support 
systems used to plan maintenance operations [13]. A maintenance operation is a follow-up of 
procedures that are needed to take place to complete a specific offshore task. Several 
maintenance operations are performed on a daily basis in an offshore wind farm; thus, it is 
important to perform them in an effective and reliable way [11]. Maintenance operations are 
ideally scheduled during periods with low wind speeds and when vessels are available [13]. 
For health and safety reasons, offshore maintenance operations are limited under specific 
environmental conditions [1]. The use of vessels in these operations can only be carried out 
during sufficiently long periods of suitable weather conditions. For this reason, it is important 
to note that weather windows for maintenance operations are limited and random [1]. 
Weather window analysis is of great importance to strategic planning of maintenance 
operations, to estimate potential weather delays. Usually, historical met-ocean is used to 
simulate the weather windows of a project throughout its lifetime. An analysis performed 
based on historical met-ocean data is defined as hindcast analysis [14]. 

There has been an increasing focus, from both wind farm owners and operators, on 
reducing O&M costs. The impact of these costs on the total cost of energy is significant, and 
this has been recently approached as a decision-making problem. These costs become even 
more critical nowadays, as not only the distance to shore increases, but also when the rated 
capacity increases. An increase in rated capacity of offshore wind turbines will increase the 
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production

2. Production and 
aquisition

3. Installation and 
commissioning

4. Operation and 
maintenance

5. 
Decommissioning 
and repowering
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generated energy, but in counterpart, it’s downtime will cause greater energy losses [13]. The 
aspects considered in the offshore O&M costs can be differentiated in two major groups, all 
the activities related to the maintenance operations and repair of the failures (total operation 
costs), and the energy loss costs caused by downtime of the wind turbine [15], that would 
otherwise be revenue if the turbine wasn’t down. This revenue can be considered as an 
opportunity cost. This is the reason that “cost-effective” O&M strategies and “well-planned” 
inspections have a major importance for current and future offshore wind farms [13]. 

2.1 Maintenance Strategies 

An overview of maintenance strategies is performed. There are several strategies that 
can be applied to a wind farm during its lifetime, but wind farm operators must choose the 
maintenance strategy that better suits their needs and priorities. Normally, the aim is to 
extend components lifespans, reduce the number of emergency repairs, and decrease overtime 
labor costs [11]. A cost-effective O&M strategy consists in reducing the number of 
maintenance tasks while maintaining good reliability of the wind turbine. If a low number of 
maintenances is performed, the wind turbine can have an increase of failures that will result 
in an increase of repair costs and downtime, which ultimately causes energy generation loss 
[13]. It is a balance that needs to be optimized. This optimization contains a high degree of 
uncertainty due to the variety of wind turbine designs used in industry, their components, 
and failure modes. The weather conditions also influence wind turbine reliability itself and 
site accessibility. The spare parts availability, the vessels’ availability and other limited 
resources also play their part into this uncertainty [13]. With this optimization, wind turbine 
availability and economic benefits are maximized. 

In literature, there are several ways to categorize the different maintenance strategies. 
In [11], several classes of maintenance strategies are identified. Figure 2.2 shows an overview 
on the classification of these maintenance strategies used, adapted from [11]. 

 

Figure 2.2. Classification of maintenance strategies. Adapted from [11]. 

Maintenance 
Strategy

Corrective Opportunistic Proactive

Predictive Condition-
based Preventive
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2.1.1 Preventive Maintenance  

As the name suggests, the objective of PM is to perform maintenance on an asset 
before a failure can occur. As such, PM must be performed regularly based on time intervals 
or operational thresholds (e.g., number of operating hours). However, PM can be 
unnecessarily expensive if done too frequently, due to the costs associated with maintenance 
vessels and personnel. On the other hand, unsuitably low PM frequency may lead to 
increased component degradation, resulting in higher failure rates, and consequently, higher 
downtimes and project costs. It follows that planning PM consists of a trade-off between 
failure risks and operational costs [11].  

PM interventions include visual inspections of specific components to detect typical 
problems such as leakage and corrosion. Other routine inspections can take place in bigger 
time intervals and at bigger detail to detect other types of problems. Non-destructive testing 
is an inspection method that takes use of techniques like acoustic emission, ultrasonic, 
radiography, thermographic, and electromagnetic to assess the wind turbine condition [13]. 
Performance-based PM activities can also take place on specific dates that are calendar-
based, component age-based, or energy production-based to prevent future failures and wind 
turbine degradation. Calendar-based maintenance can be of two types, the PM1, and PM2. 
PM1 maintenance takes place one time per operation year, usually in July, and the PM2 
takes place two times a year, usually in May and October. To perform the component age-
based and the energy production-based maintenance, a time interval or energy interval needs 
to be defined. It can be difficult task to find the optimum interval to replace critical assets 
that maximizes system reliability [13]. 

2.1.2 Corrective Maintenance 

In the CM strategy, also known as breakdown or reactive maintenance, the 
maintenance action is scheduled as a reaction to component failure. Component failure can 
result in partial or total shutdown of the wind turbine’s energy generation. While this type of 
maintenance avoids unnecessary maintenance interventions, it may lead to high costs and 
revenue losses, especially for offshore wind farms that are deployed far from shore and with 
low accessibility [13], [16]. Whenever downtime occurs, a quick maintenance response is 
fundamental to avoid significant economic losses [16]. The greatest advantage of this 
maintenance strategy is that the remaining useful life of the asset is always fully utilized, 
which means that there is no waste of resources by replacing parts before they become non-
functional. This ultimately means that a certain asset will fail the least it can, along its 
lifetime [16] thus, a lower number of failures implies a lower number of maintenance 
operations. On the other hand, CM can cause more damage to components when a failure 
occurs, which can increase costs [16]. If a failure occurs during a time of high wind speed 
resource, the revenue loss can be very high. This revenue loss is augmented by high 
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downtime consequent of the usage of this strategy itself or if the failure occurs on a month of 
harsh weather causing low site accessibility. 

Opportunistic maintenance (OM) can be used on top of CM. It takes place when an 
unscheduled maintenance task is undergoing repair or replacement of a component in a wind 
turbine. It consists in taking the opportunity of this maintenance task to perform other PM 
tasks on other components or wind turbines [13] to reduce crew visits, production losses, 
traveling and setup expenses [12]. 

2.1.3 Condition-based Maintenance 

Condition-based maintenance (CBM) is a more sophisticated maintenance approach, 
where the diagnosis of the health condition of a wind turbine is performed. The health of the 
wind turbine components is assessed through continuous monitoring and inspections, and 
whenever the condition reaches a certain threshold, maintenance interventions, either 
component repair or replacement, are scheduled [13].  

Condition monitoring systems (CMSs) are sensors used in CBM. CMSs have high 
installation and maintenance costs. These costs can go up to 13,000€ per turbine [17]. Thus, 
adoption of CMSs has been low in current wind farms [18]. The Supervisory Control and 
Data Acquisition (SCADA) system is also a data collection system that is considered a 
standard and is largely installed on existing wind farms. SCADA monitors the run-time 
operation condition of a wind turbine by collecting data at low sample rate, generally once 
per 10 minutes [17]. The types of data collected by the system are, for example, temperature, 
speed, and power [18]. 

2.1.4 Predictive Maintenance 

The PdM strategy uses current, and old data of the system obtained through sensor 
measurements and signal processing methods. This information is used to predict the failure 
of the system during operation to optimally schedule maintenance operations [13]. 
Maintenance operations are performed only when its necessary, so that the system is not 
over-maintained, since that may lead to unnecessary costs [16]. The PdM strategy can also 
take advantage of SCADA systems to perform fault prognostic functions, without the need 
for installation of additional CMSs equipment that can lead to higher costs [17] [18] [19]. 

In the last few years, research has been published on the topic of PdM in offshore 
wind applications. Some studies use machine learning algorithms to predict wind turbine 
failures. Some examples of machine learning publications were found. Predictions can be 
made in short-term or long-term, depending on the algorithm.  

Elmar et al.  [20] and Leahy et al. [17] are two examples of short-term prediction 
models. Elmar et al. [20] reports using machine learning techniques for fault prediction in 
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generators. The methodology used in this paper takes into account data limitations, performs 
statistical tests on time series, selects the features with the most predictive power, and 
applies machine learning models to predict a fault in the next 1 hour [20]. Leahy et al. [17] 
presents a new method for automatically identifying historical stoppages on wind turbines 
using SCADA and alarms data. Each time that the turbine stops operating, that stoppage is 
associated with a turbine fault, a routine maintenance activity, a grid-related event, or 
several other categories. This is then checked against maintenance logs to find the accuracy 
of the label. The labeled data is then fed into a classifier to predict when stoppages will 
occur. Maintenance activities were predicted with fault prediction windows of 2, 4, 8, 12, 24, 
and 48 hours, where 92% of unplanned maintenance activities, and 100% of planned 
maintenance activities were correctly predicted [17]. 

Zhao et al. in [19] and [18] gives examples of long-term predictions. Zhao et al. [19] 
reports the prediction of wind turbine generator failures using data-driven methods. It is also 
stated, that for generators, 10 to 30 days is sufficient lead time to schedule maintenance 
activities before a generator failure occurs. The purchase of the generator usually takes about 
20 to 30 days, and the replacement and debugging can take 1 or 2 days. Apart from this, it is 
also stated that wind turbine performance degradation can be seen for about 44 days before 
failure occurs [19]. Zhao et al. [18] is able to predict the remaining useful life (RUL) of wind 
turbine generators 18 days ahead before a fault occurs with 80% accuracy. Besides that, the 
model is able to diagnose the state of the wind turbine generator when the fault occurs [18]. 

2.2 Offshore Logistic Infrastructure 

The selection of appropriate logistic infrastructure, namely vessels, ports, and support 
equipment, is a fundamental step in planning O&M operations in offshore wind projects due 
to its impact on project costs. Considerations about these support infrastructures are 
provided in the next subsections. 

2.2.1 Vessels 

Vessels are used mainly in the transport of personnel, transport of equipment, and 
transport and installation of components. In the O&M phase, the type of vessel used depends 
on the maintenance operation and its maintenance requirements to repair or replace a certain 
component. Examples of types of vessels are given below, from Figure 2.3 to Figure 2.7. 

Firstly, crew transfer vessels (CTV) in Figure 2.3, are small vessels mainly designed 
to quickly transport offshore personnel, and smaller cargo to the offshore wind site. Personnel 
are often technicians that transit to the site with the aim of performing small repairs that 
don’t require large equipment or components. CTVs typically have short-range capabilities 
(about 75 km [21]).  
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Figure 2.3. Crew Transfer Vessel. Source: [22]. Figure 2.4. Service Operation Vessel. Source: [23]. 

Service operation vessels (SOV), shown in Figure 2.4, are vessels with high transit 
ranges (about 150 km [21]) and excellent station-keeping capabilities, being capable of 
operating in offshore environments for weeks [21]. They are frequently equipped with wave 
motion-compensated gangways that are used to ensure safe and more comfortable personnel 
transfers under more energetic sea states. They are typically used to carry out a wide range 
of functions, and as such can be included in several vessel categories such as construction 
support vessels, installation support vessels and walk-to-work vessels [24]. 
 

 
Figure 2.5. Self-Propelled Crave Vessel. Source: [25]. 

 
Figure 2.6. Jack-up Vessel. Source: [26]. 

A self-propelled crane vessel (PCV), shown in Figure 2.5, is a vessel used to lift large 
and heavy parts. The jack-up vessel is used for station keeping using self-elevating legs to 
stabilize itself on the bottom of the sea, as can be seen in Figure 2.6 [24]. 

In Figure 2.7, it is shown the transport barge that is commonly used to transport 
large or heavy components to a site [24]. Other vessel types are also used in offshore wind 
projects. These include tugs, multicats, anchor-handling tug supply vessels, cable laying 
vessels, diving support vessels, guard vessels, non-propelled barge, non-propelled crane 
vessels, platform supply vessels, rock dumper, SOV with gangway, and survey vessels [14]. 
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Figure 2.7. Non-propelled Transport Barge. Source: [27]. 

2.2.2 Ports 

In the context of offshore wind energy, ports can be classified into three categories. 
The first category is O&M port, the second category is the assembly port, and the third 
category, the manufacturing port [21]. The O&M Port is the port where activities associated 
with O&M of an offshore wind farm are performed, during its design lifetime. The facilities 
contained at an O&M port are specific to the O&M strategy used in the wind farm project. 
An example of this is the type of vessels used by the maintenance strategy [21].  

O&M ports may have two main sub-distinctions: CTV-based, and SOV-based. 
Northern European projects have typically adopted a CTV-based O&M strategy, where the 
vessels and technicians only stay at sea for a single shift. SOV-based O&M strategies have 
been used in fewer projects but are more likely to be used more in future projects deployed 
further offshore, it can be advantageous to use the greater distance range, and the higher 
time of service of the SOVs, for greater cost savings. It is also feasible for projects to adopt 
mixed CTV and SOV-based O&M strategies. O&M ports are not suitable for the 
replacement of major components like a blade, in that case, it is required a port accessible to 
larger vessels such as assembly or manufacturing ports [21]. 

An example of an O&M port can be seen in Figure 2.8 and Figure 2.9. Mukran port is 
located in the Baltic Sea, on the island of Rügen, in Germany. This port is serves as a base 
for offshore installations and a service hub for operations and maintenance. Its water dept of 
11.5 m is perfect for specialized offshore vessels such as jack-up barges, floating cranes, and 
cable-laying vessels. The service hub is situated within the boundaries of the port area and 
offers sufficient facilities for CTVs, tugs, and other types of smaller vessels [28]. 
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Figure 2.8. Mukran port in Baltic Sea, Rügen, Germany. Source: [29]. 

 
Figure 2.9. Mukran port in Baltic Sea, Rügen, Germany. Source: [29]. 

2.2.3 Equipment 

To fulfill maintenance operations, extra equipment may be required. This equipment 
is usually rented, which implies additional costs for the operation. There is a variety of 
equipment’s that support the maintenance operations. Examples of equipment are given from 
Figure 2.10 and Figure 2.11. 

 
Figure 2.10. Motion Compensating Crane. Source: [30]. 

 
Figure 2.11. Remotely Operated Vehicle. Source: [31]. 

Figure 2.10 shows a 3-axis motion-compensating crane that allows extremely accurate 
load positioning during offshore wind turbine, rig supply and maintenance operations to fixed 
or floating offshore installations. Remotely operated vehicles (ROVs) are underwater vehicles 
that can be used, for example, for underwater inspections [24], as shown in Figure 2.11. 
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2.3 Wind Turbine Reliability 

The reliability of an asset denotes its ability to fulfill the specified requirements for 
which it was designed, during its lifetime [32] or, the ability of an item to perform a required 
function under given conditions for a given time interval. Reliability of an offshore wind farm 
depends on several factors, one of these being the individual reliability of every single wind 
turbine that comprises the wind farm, that itself is tied to their component’s reliability. To 
express reliability, the failure rate (FR) [33] or mean time to failure can be used (MTTF). 

Reliability is part of the acronym RAMS for reliability (R), availability (A), 
maintainability (M), and survivability (S) [32]. This method is often used to evaluate the 
performance of a wind farm and its maintenance strategy.  

Availability can be divided into three types. Technical availability, or just 
availability, can be defined as the fraction of time that a wind turbine is operating according 
to its design specifications during a specific time interval [34] [16]. Normally, this time 
interval is the turbine lifetime. The operational availability considers only full and partial 
performance, the amount of time that the wind turbine is operating or can operate during its 
lifetime. The last type of availability is the energetic availability that is a fraction of energies. 
It considers the amount of energy produced by the wind turbine divided by the energy that 
could be produced if there was 100% availability. A turbine with poor availability will have 
significant losses in energy production and therefore maximizing it is a top priority for wind 
farm operators [16]. Availability is an important performance index when assessing a 
maintenance strategy for a wind farm. 

The other two remaining items of the RAMS acronym are maintainability and 
survivability. Maintainability is the ability of a system or component to be repaired and 
restored to service. Maintenance is performed by trained personnel with the proper skill set, 
specific procedures, and resources. It can be assessed through mean time to repair [32]. The 
survivability of an item can be defined as the probability of an item still being functional, at 
a certain time [33]. 

2.3.1 Wind Turbine Failure Rate 

Like any mechanical system, wind turbines occasionally fail throughout their lifetimes, 
although the definition of failure may vary. In [35], a failure is interpreted as “a visit to a 
turbine, outside of a scheduled operation, in which material is consumed”, and in [16] it is 
interpreted as the “inability of a system or component to perform its required functions 
within specified performance requirements”. 

The failure rate is a common term used to express the reliability of an item, as 
mentioned. In general, it is expressed as the number of failures per unit of time. In [35], the 
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failure rate of a wind turbine can also be expressed per turbine per year and is computed, as 
Equation 2.1 shows, 

 𝜆 =  
∑ ∑ 𝑛 , 𝑁⁄

∑ 𝑇 8760⁄
, (2.1) 

where, 𝜆 is the failure rate per turbine per year, 𝐼 is the number of samples for which data 
are collected, 𝐾 is the number of sub-assemblies, 𝑛 ,  is the number of failures, 𝑁  is the 
number of turbines and, 𝑇  is the total time period, in hours. In Equation 2.1, the numerator 
is the sum of the number of failures in all periods per turbine. The denominator is the sum of 
all time periods in hours divided by 8760, which is the total number of hours in a year. Even 
though the failure rate denotes an average number of failures per time period, the failure rate 
itself typically varies along the lifetime of any given asset. Experience shows that these 
variations frequently follow the trend in the shape of a “bathtub” curve [33]. Figure 2.12 
shows an example of the variations in failure rate, in the shape of the bathtub curve. 

 

Figure 2.12. Bathtub curve, generic representation of failure rate with time. Source: [36]. 

In reliability engineering, it is observed that the failure rate of an item, throughout its 
lifetime, will go over three types of periods, composing the bathtub curve. The first period is 
called “Infant Mortality”, where the failure rate is decreasing over time. The second period is 
called “Random failure” or “useful life”, where the failure rate is constant over time. Finally, 
the third period is called “Wear out” where the failure rate increases over time. These three 
periods imply that there are two points where distributions change. In [35] it was observed a 
decreasing trend in the failure rates for components with higher failure rates, such as the 
converter/electrical component, that may point to the beginning of the bathtub curve. 
However, these results are outnumbered by components where the curve is not observed, 
resulting in no evidence of a bathtub curve in the overall turbine failure rates. Also, the 
value of the bathtub in characterizing infant mortality is still questionable as seen in [36]. 

2.3.2 Offshore Reliability Data 

As previously mentioned, a conventional way to express wind turbine reliability is 
through the concept of failure rates. In [35], an analysis to determine the failure rates, 
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average repair time, average repair cost and average number of technicians was conducted 
with approximately offshore 350 turbines, and their sub-assemblies, over a five year period. 
The turbines are from sites distributed throughout Europe and owned by anonymous leading 
manufacturers. All the turbines included are geared turbines with an induction machine 
where their nominal power goes from 2 to 4MW, and the rotor diameter goes from 80 to 
120m (exact values not disclosed). The turbines were maintained using CM and PM but the 
used data does not consider all scheduled operations such as scheduled services or 
inspections, though it is unclear if or how much OM was used [35]. In this paper, failures are 
categorized into three categories, divided per component, and the respective failure rates 
computed. The total failure rate of the component is the sum of all the categories. The 
categories were defined by type of maintenance and classified by material costs. Each failure 
was categorized by analyzing the material costs of repairing that failure. Categories include 
firstly, major replacement, where all the failures considered in this category have costs 
greater than 10000€. Secondly, the major repair, where the costs go from a range of 1000 to 
10000€. Finally, the minor repair, where the costs must be under 1000€. There is an extra 
category, called no cost data, that represents the failures that did not have a material cost in 
the work order database, which is a database where every work carried out in the turbine is 
recorded [35].  

Figure 2.13 shows the failure rates per turbine per year for the subassemblies and cost 
category.  

 

Figure 2.13. Failure rates for subassembly and cost category. Source: [35]. 

With this category definition, costs are not dependent on distance to shore because 
only material costs are considered, which brings great advantage when using them as inputs 
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of O&M models. Carroll et al. [35] provides additional data on the average repair time, 
average number of technicians, and average repair costs for each type of maintenance. 

In a data review conducted by Dao et al. [37], 18 wind turbine reliability data sources 
were used, containing more than 18000 wind turbines. In the data sources, 4 are European 
offshore sites, corresponding to 1551 offshore wind turbines and, the remaining are onshore. 
All the turbines have a nominal power greater than 2MW. Dao et al. [37] identifies the 
differences between the population of onshore and offshore wind turbines. Additionally, an 
analysis is performed on failure rates and downtimes of the wind turbine subassemblies. The 
latest found data review was conducted by Cervasco et al. [34], where a systematic review of 
the reliability, availability and maintainability data for on- and offshore wind turbines is 
performed. In this review, the data was collected from 24 repositories at system and 
subsystem level. Operational availabilities were estimated for several data repositories using 
the openO&M tool [38]. Carroll et al.’s [35] work is included in many of these reviews, such 
as in [37], [34], [39], [40]. 
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Chapter 3: Modeling Logistic Support Tools 

To compute the eventual logistic benefits that a PdM strategy might bring to offshore 
wind projects, an offshore logistic support tool needed to be developed to aid in the 
computations. One important aspect of an offshore logistic support tool is how it models 
wind turbine reliability, which is reviewed in the following section. Then, a review of offshore 
logistic support tools is performed in a table, and the two last tools are presented in more 
detail. These last two tools served as inspiration for some features of the developed model.  

3.1 Modeling Reliability 

The simulation of failures on a wind turbine or component is an important feature of 
an O&M tool. The simulation of failures aims to model failure events throughout a wind 
farm’s lifetime, as an approximation to reality, and the time of failure serves as an input to 
other O&M tool functionalities, for example, to compute maintenance costs, and perform 
other analyses. The simulation of failures can be done based on reliability theory, used on 
reliability engineering. 

3.1.1 Weibull distribution 

The Weibull distribution is normally used in reliability engineering due to its 
versatility to characterize the bathtub curve, even though there are other distributions that 
can be used [33]. The Weibull distribution can contain three parameters and its probability 
density function (PDF) is given below in Equation 3.1, 

 𝑓(𝑡) =
𝛽

𝜂

𝑡 − 𝛾

𝜂
𝑒 , (3.1) 

where, 𝛾 is the offset from zero, 𝛽 is the shape parameter, and 𝜂 is the scale parameter. To 
find the probability of failure within the time interval (0, t) [41], the cumulative distribution 
function (CDF) in Equation 3.2 is used, 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑓(𝑢)𝑑𝑢 = 1 − 𝑒 . (3.2) 

Equation 3.2 sums all the area below 𝑓(𝑡), from 0 until t. T denotes the stochastic 
variable of time to failure. 

To describe the survivability of an item, in this case a wind turbine, normally the 
reliability function 𝑅(𝑡) is used, also called the survival function [41]. It is used to describe 
the probability of an item still being functional, at a certain time [33] or the probability that 
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no failure occurred prior to the time step t. For the three-parameter Weibull distribution, the 
reliability function is shown below in Equation 3.3, 

 𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝑓(𝑢)𝑑𝑢 = 𝑓(𝑢)𝑑𝑢 = 𝑒 , (3.3) 

where it uses the same parameters as the PDF (Equation 3.1). With this, as time passes, 
𝐹(𝑡) grows, and 𝑅(𝑡) decreases. 

As seen in [41], the time dependent failure rate function for the Weibull distribution is 
defined as the probability that an item will fail in the time interval (𝑡, 𝑡 + Δt ) when its 
known that the item is functioning at time interval 𝑡 [41], given in Equation 3.4, 

 𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝛽
𝜂

𝑡 − 𝛾
𝜂

𝑒

𝑒

=
𝛽

𝜂

𝑡 − 𝛾

𝜂
. (3.4) 

Figure 3.1 shows how the shape parameter (𝛽) of the Weibull distribution can 
influence the failure rate function (also called hazard function, ℎ(𝑡)) [42]. 

 

Figure 3.1. Influence of the shape parameter (𝛽) in the failure rate function. Source: [42]. 

A shape parameter smaller than one will translate into a decreasing failure rate 
function, a shape parameter of one will translate into a constant failure rate function, and a 
shape parameter higher than one will translate into an increasing failure rate function. 
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3.1.2 Exponential Distribution 

In the case where shape parameter (𝛽) of one, the failure rate in Equation 3.4 is 
constant, and not time dependent. This represents the random failure period in the bathtub 
curve, 

 𝜆 =
1

𝜂
 . (3.5) 

Even though failure rates may vary over time, most studies rely on the simplification 
of the failure rate as a constant [33]. If one already has a failure rate from given data 
repository, to find the distribution for constant failure rate (where 𝛽 equals to 1), one can 
find the scale parameter (𝜂) with Equation 3.6, 

 𝜂 =
1

𝜆
 . (3.6) 

Moving forward, replacing Equation 3.6 in the Weibull distribution PDF 
(Equation 3.1), taking the offset (𝛾) of zero, and a shape parameter (𝛽) of one, the PDF of 
the Weibull distribution is equal to the PDF of the exponential distribution [33], [41], [34], 
setting this as a special case of the Weibull distribution, when 𝜂 = 1 𝜆⁄ , with constant failure 
rate (𝜆). The PDF of the exponential distribution can then be seen in Equation 3.7, 

 𝑓(𝑡) = 𝜆 𝑒 . (3.7) 

The reliability function of the exponential distribution is given by Equation 3.8 [41], 

 𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 𝑓(𝑢)𝑑𝑢 = 𝑒 . (3.8) 

The CDF for the exponential distribution is given by Equation 3.9, as also stated in 
[41], and [32]. 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑓(𝑢)𝑑𝑢 = 1 − 𝑒 . (3.9) 

3.1.3 Time to Failure 

With the CDF of the exponential distribution, the time to failure (TTF) can be 
found. The TTF is defined as the time that it takes for an item to fail, and it can be found, 
in this case, through Equation 3.10 [32],  

 𝑡 = −
1

𝜆
ln[1 − 𝐹(𝑡)], (3.10) 

where, 𝜆  is the component failure rate, 𝑡 is the TTF, and 𝐹(𝑡) is a value that is found by 
uniformly sample (between 0 and 1) the CDF in Equation 3.9 [32]. 
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The theoretical mean time to failure can be approximated to Equation 3.11, from [32],  

 𝑀𝑇𝑇𝐹 =
1

𝜆
, (3.11) 

where 𝜆  is the component failure rate. Using Equation 3.11 to find the TTF could also be 
possible, though it is a very large approximation because it is only true after an infinite 
number of failures. This ultimately would mean that the simulated failures would be 
separated in time by fixed intervals. In reality, there is always randomness that needs to be 
considered in the process. 

3.2 Offshore Logistic Support Tools 

An overview of available tools for offshore projects is performed. There are several 
logistic support tools developed for offshore projects. Table 3.1 presents a review of these 
main tools and their functionalities [14] such as the weather window analysis, referred to as 
hindcast, where historical met-ocean data is used, or referred to as forecast, where met-ocean 
data is estimated. 

Table 3.1. Main logistic support tools for offshore wind projects and their functionalities. Color scheme: red–worse 
scenario, orange–in between scenario and, green–best scenario. Infrastructure selection label: P–ports. V–vessels 

and, E–equipment. Adapted from [14]. 

Product Name 
Open 
source 

Applicable 
to Ocean 
Energy 

Weather 
window 
analysis 

Infrastructure 
selection 

Optimal 
operation 

plan 
Inst. O&M Decom. 

O2M No No Hindcast No No No Yes No 
OMCAM No No Hindcast No No No Yes No 

ECN O&M Access No No Forecast No No No Yes No 
DTO Logistics module 

[43] 
Yes Yes Hindcast P, V, E Yes Yes Yes No 

DTO+LMO module [14] Yes Yes Hindcast P, V, E Yes Yes Yes Yes 
ECN O&M Calculator 

(OMCE) [44] 
No No Hindcast No No No Yes No 

Multi-Agent-System No No Hindcast No No No Yes No 
ROMEO O&M Tool [45] N/A No Forecast No No No Yes No 

NoWIcob [46] No No Hindcast V No No Yes No 
Vessel fleet optimization 

models [47] 
No No Hindcast V No No Yes No 

Shoreline Design [48] No No Hindcast No No Yes Yes No 
StrathOW-OM [49] No No Hindcast No No No Yes No 

WES O&M Tool [50] Yes Yes Hindcast No No No Yes No 
Mermaid [51] No Partially Hindcast No No - - - 

ForeCoast Marine [52] No Partially Hindcast No No - - - 
StormGEO S-Planner [53] No Partially Forecast No No - - - 

OpenO&M Tool [38] Yes N/A Hindcast No N/A No Yes No 
O&M simulation tool [33] N/A N/A Hindcast No N/A No Yes No 

These tools can be compared with respect to their main functionalities. Most of the 
reviewed tools use a hindcast weather window analysis. Only three tools are open source, the 
DTO Logistics module, the DTO+LMO module, and the WES O&M Tool. O&M tools can 
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deliver several advantages to offshore projects, such as the identification of critical 
components in terms of performance and costs, the estimation of availability, revenue and 
operational expenditure (OPEX) and planning and optimization of logistical strategies [54]. 
The DTO+LMO module tool, from DTOceanPlus, is the more complete tool with the 
advantage of being open source. In Table 3.1, there are only four tools that consider 
infrastructure selection. The DTO Logistics module and the DTO+LMO module contain 
port, vessel, and equipment selection. The NoWIcob and the Vessel fleet optimization model 
only consider vessel selection, and the other models exclude this functionality completely. 

The OpenO&M [38] and O&M simulation tools [33] in Table 3.1 are presented in 
more detail in the following sections. These served as the main inspiration for some features 
of the developed model for this dissertation. 

3.2.1 OpenO&M Tool 

Details about the development on an O&M tool were found in [38], referring to the 
OpenO&M. The OpenO&M tool is an open access tool, developed in Matlab®, for the 
simulation of O&M activities. The tool is composed of a reliability module, power module, 
weather module, and maintenance module. It uses as inputs user-defined failure rates of 
various subsystems alongside maintenance, repair policies, and simulated weather conditions 
to simulate long-term availability and power production. Stochastic simulations in the time 
domain are made to simulate the failure modes of the wind turbines, by using failure rates to 
simulate time to failures, based on an exponential distribution [38]. Figure 3.2 shows the 
structure of the OpenO&M tool. 

 

Figure 3.2. Structure of OpenO&M simulation tool. Source: [16] and [34]. 
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The reliability module simulates the occurrence and severity of the different failure 
types of the subsystems of the turbine. The maintenance types are divided in three 
categories, minor failure, major failure, and replacement, similarly to what was done in 
Carroll et al. [35]. Each type of failure has different consequences for the turbine’s 
availability. Minor failure considers that the wind turbine continues operational after the 
failure and thus, the downtime associated with that failure is only the repair time. In this 
case, the maintenance is scheduled after the failure and the turbine continues operational 
until then. For the major failure, the turbine immediately stops operating at failure and 
maintenance operation must take place to restore it back to “full health”. Finally, the 
replacement failure type also causes immediate downtime, maintenance operation must 
happen to replace the failed subsystem and that may imply greater downtime than major 
failures. There is a failure rate used for each maintenance type of the subsystems, and with 
the sum of all those three failure rates, the failure rate of a given subassembly can be 
obtained as seen in Figure 2.13 from [35]. The same applies to the wind turbine, where the 
sum of all failure rates of the subsystems of the turbine originates the turbine failure rate. 
References [16] and [34] are also based in the OpenO&M tool.  

3.2.2 O&M Simulation Tool 

In reference [33] it is proposed a version of an O&M simulation tool where a failure 
simulation model is integrated with an O&M simulation model to assess the wind farm 
availability. Figure 3.3 shows the flowchart with the main functionalities of the tool. 

 

Figure 3.3. O&M simulation tool - main functionalities. Source: [33]. 

The tool in [33] is divided into several modules from 1 to 7. Module 1 contains the 
historic and site-specific met-ocean data (e.g., wind speed and wave height). Module 2 
contains the wind turbine (referred as wind energy converter (WEC) in Figure 3.3), and 
park-specific technical data (e.g., failure rates, lifetime, and rated power). Modules 1 and 2 
are for defined inputs, and the remaining are processing modules. Module 3 is where the 
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weather data from module 1 is processed by using a Markovian process to generate discrete 
wind speed and wave height time series for the duration of the simulation. A more detailed 
description can be found in [33]. Module 4 represents the output from module 3, the discrete 
time series for wind speed and wave height along the simulation duration. Module 5 contains 
the failure model. The failure model processes the failure rates of the turbine components to 
generate turbine failure events [33]. The focus of this module itself is to generate time to 
failures. The TTF is determined by the generation of a random number in a selected 
statistical distribution function around the failure. Reference [33] aims to test different 
distributions functions for this TTF generation to assess the influence of statistical 
uncertainty on component reliability estimations. 

One of the most important modules in reference [33] is module 6. It is composed of an 
O&M simulation tool which represents the chosen O&M strategy. The objective of this 
module is to compute the total downtime for each failure, that is composed of several sums of 
time intervals, the mobilization & logistics, the waiting for weather window, the 
transportation time, and the repair time. The interactions between modules 5 and 6 is shown 
in Figure 3.4. The circled numbers (5 and 6) in Figure 3.4 refer to the modules previously 
shown in Figure 3.3. 

 

Figure 3.4. Failure module and O&M simulation interaction. Source: [33]. 

Initially, for a component, a first TTF (“TTF-A”) is generated by the failure 
simulation model (module 5). During this “TTF-A” the turbine is running and, at the end of 
this time to failure interval, the failure happens, represented by a red “X” in Figure 3.4, that 
will cause downtime. Then the O&M simulation model (module 6) generates the total 
downtime for a failure that happens at that time. Afterwards, the component is back to “full 
health” because it was repaired or replaced. With the component at full health, another TTF 
(“TTF-B”) is generated again by the failure model (module 5) and the process repeats until 
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the end of the simulation duration, represented in the time axis. Component failures are 
assumed to be uncorrelated nor dependent on external conditions [33]. 

The validation of this O&M simulation tool [33] is made by the number of expected 
failures. Assuming that constant failure rates are obtained from a wind farm with the same 
O&M strategy used in the tool, the expected number of failures of the wind farm is given by 
Equation 3.12 from [33], 

 𝑁𝑜. 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑅 ×  𝑁𝑜. 𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝑠 × 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑦𝑒𝑎𝑟𝑠. (3.12) 
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Chapter 4: Methodology 

To quantify the potential logistic benefits of a PdM strategy in comparison with a 
CM strategy, two separate but complementary analysis are carried out, based on the 
developed Python model for this dissertation. The wind farm analysis focuses on simulating 
the impacts of CM and PdM interventions in the context of an offshore wind project, taking 
into consideration the subassemblies’ reliability. In this analysis, turbine operation time-series 
are created to simulate the turbines’ lifetime. The main benefits computed in the wind farm 
analysis include variations in total lifetime costs, and lifetime availabilities. It is important to 
note that, in this analysis despite PdM being the focus of this work, failures are not predicted 
by the model, failures are instead simulated. The present study is assuming that these failure 
simulations are failure predictions made by a sensor-based predictive algorithm. The 
objective of the developed model is to compute the benefits as if it were known, with full 
certainty, when the failures would happen, and not to predict the actual failures.  

The component level analysis focuses on evaluating the impact that failures 
distributed throughout different months can have on total costs. For each subassembly, 
failure events are distributed throughout the year in order to assess the annual variability 
and the consequences of having maintenance interventions during “good” and “bad” weather 
months for a given site. Benefits related to the total costs of all distributed failures for each 
subassembly and maintenance type are computed. In response to failure events, CM and 
PdM operations are scheduled after or before failure occurrence and compared based on total 
costs. This analysis is decoupled from subassembly reliability.  

Firstly, in this chapter, general inputs for a base case are presented. Afterwards, the 
methods used to develop the modules, that build the model, are presented with their specific 
base case inputs. Finally, both analyses are explained in a more integrated way. 

4.1 Base Case General Inputs 

4.1.1 Wind Farm Characteristics 

The wind speed data obtained was collected from an offshore site in Ireland. This 
data is historical data on mean wind speed, in an hourly time step for 20 years, starting from 
1st of January 1994 at 02h00, here set as the commissioning date. The lifetime considered for 
the analysis was thus 20 years, and the site located somewhere offshore of Ireland, assuming 
100 km of distance from the O&M port. There are 20 wind turbines used in the wind farm 
analysis, and it is assumed that all turbines have the same specifications. 
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4.1.2 Wind Turbine Characteristics 

For both analyses, the DTU 10MW reference wind turbine is used. It is a three-
bladed upwind wind turbine with a multi-stage gearbox, 119 m of hub height, and 178.3 m of 
rotor diameter.  

The wind turbine composition used in this dissertation is from Carroll et al. [35], 
reviewed previously. In reference [35], different subassemblies have three different 
maintenance types, the replacement, the major repair, and minor repair. These maintenance 
types are modeled for each subassembly, where each requires its own specific maintenance 
operation.  

4.2 Model Structure 

To conduct the two analyses, a model was developed in python. This model employs 
a module-based structure. The methodology used to develop the modules is explained in the 
following sections. In each module, the used base case inputs are given in parallel and 
explained. 

4.3 Reliability Module 

The reliability module is based on reliability theory, reviewed in the literature. The 
failures events are generated from the failure rates, from [35]. Table 4.1 shows the failure 
rates of each subassembly and maintenance type. 

Table 4.1. Failure rates of each subassembly maintenance type. Source: [35]. 

Subassembly 
Major Replacement 

[Failures 
/turbine/year] 

Major Repair 
[Failures 

/turbine/year] 

Minor Repair 
[Failures 

/turbine/year] 
Pitch / Hyd 0.001 0.179 0.896 

Other Components 0.001 0.042 0.962 
Generator 0.095 0.321 0.583 
Gearbox 0.154 0.038 0.441 
Blade 0.001 0.01 0.509 

Grease / Oil / Cooling Liq. 0 0.006 0.465 
Electrical Components 0.002 0.016 0.417 

Contactor / Circuit / Breaker / 
Relay 

0.002 0.054 0.374 

Controls 0.001 0.054 0.373 
Safety 0 0.004 0.388 
Sensors 0 0.07 0.276 

Pumps / Motors 0 0.043 0.303 
Hub 0.001 0.038 0.196 

Heaters / Coolers 0 0.007 0.206 
Yaw System 0.001 0.006 0.182 

Tower / Foundation 0 0.089 0.096 
Power Supply / Converter 0.005 0.081 0.094 

Service Items 0 0.001 0.124 
Transformer 0.001 0.003 0.061 
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To model the failures of the category “No Cost Data”, it was assumed that these 
failures belong to the minor repair category, by doing the sum, because these had no cost 
data associated.  

It is assumed that failure events of different subassemblies are independent of each 
other. Therefore, a failure that happens in a certain subassembly does not affect another 
subassembly’s reliability. Maintenance types with a failure rate of zero are not modeled 
because there are no failures, in that case. Those include the grease/oil/cooling liq. major 
replacement, the heaters/coolers major replacement, the pumps/motors major replacement, 
the safety major replacement, the sensors major replacement, the service items major repair, 
the service items major replacement, and finally the tower/foundation major replacement. 

4.3.1 Failure Events 

Failure events are distributed in the time-series by generating different TTFs. The 
TTFs are generated assuming a constant failure rate, leading to the usage of the exponential 
distribution, as seen in literature. The cumulative distribution function (CDF) for the 
exponential distribution is given by Equation 4.1, 

 𝐹(𝑡) = 1 − 𝑒 , (4.1) 

where, 𝜆  is the subassembly’s maintenance failure rate, and 𝑡 is the TTF. The TTFs for 
each subassembly and maintenance types are found through Equation 4.2, 

 𝑡 = −
1

𝜆
ln 1 − 𝐹(𝑡) , (4.2) 

where, 𝐹(𝑡) is a value that is found by uniformly sample (between 0 and 1) the CDF in 
Equation 4.1 [32]. The TTF is then converted into hours. 

All TTF’s, that generate each failure, are the same for all maintenance strategies 
modeled for a given subassembly’s maintenance type, except when there are extra failures 
generated caused by wasted useful life (WUL) in the PdM strategy. In this case, extra TTFs 
are generated if needed. More on this in the Wind Farm Analysis results. 

4.4 Power Module 

The power module objective is to compute the energy produced in each hour of the 
turbine’s lifetime. To do this, three main steps are performed for each hour, the wind speed is 
extrapolated from reference height to turbine height, then power is found for that wind 
speed, and finally the energy production is computed. 
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4.4.1 Wind Speed at Hub Height 

The wind speed varies between different sites depending on the climate of the region, 
the surface roughness conditions, and the topography. The lowest region of the atmosphere is 
known as the atmospheric boundary layer that goes from the surface to between 300 m and 
2000 m [55]. The met mast, which measures wind speed, is not placed at hub height but at a 
much lower height, to save costs, before even any turbine is installed on site. To use the 
power curve of a wind turbine, the wind speed at hub height is needed. Thus, reference [55] 
shows how to extrapolate the mean wind speed at reference height to hub height using the 
Prandtl logarithmic law, in Equation 4.3, 

 𝑈 = 𝑈
ln(𝐻 𝑍⁄ )

ln(ℎ 𝑍⁄ )
          [𝑚/𝑠], (4.3) 

where, 𝑈  is the mean wind speed at hub height, 𝑈  is the mean wind speed at reference 
height measured at the met mast, 𝐻 is the height of the hub of the turbine, 119 m, and ℎ is 
the height where the data was measured by the met mast, in this case 10 m. 𝑍  is the surface 
roughness height equal to 0.0002 m [56]. With this, every hour of mean wind speed in the site 
wind speed data is extrapolated to the turbine height. 

4.4.2 Power Curve 

With the mean wind speed at hub height, the power curve can be utilized. The power 
curve of a wind turbine is composed of four major regions. These regions are defined by three 
wind speeds in the curve, the cut-in wind speed, the rated wind speed, and the cut-out wind 
speed, meaning the wind speed where the turbine starts producing energy, the wind speed 
that obtains maximum power, and the wind speed where the turbine stops producing energy, 
respectively [38]. For the 10MW wind turbine considered in the base case, the cut-in wind 
speed is 4 m/s, the rated wind speed 11.4 m/s, and the cut-out is 25 m/s. Figure 4.1 shows 
the power curve of DTU 10 MW reference wind turbine from [57]. 

 

Figure 4.1. DTU 10 MW reference wind turbine power curve. Source: [57]. 
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The first part of the power curve is approximated to a polynomial to grant flexibility 
to find the power for any given mean hourly wind speed in the data. Equation 4.4 shows the 
polynomial equation that includes the peak shaving until 12 m/s, 

 𝑃 = −6.908 · 𝑤 + 208.73 · 𝑤 − 2141.1 · 𝑤 + 9773.4 · 𝑤 − 16331          [𝑘𝑊], (4.4) 

where, 𝑃  is the electrical power, in kW, and 𝑤 is the mean hourly wind speed, in m/s. 
The squared error (R2) of the polynomial is equal to 0.9987, which assesses the trendline with 
a very good approximation. Therefore, for each hour from the mean hourly wind speed at 
turbine height, the power that can be extracted is computed for the whole turbine’s lifetime. 

4.4.3 Energy production 

The energy produced (𝐸 ) by the wind turbine, assuming the wind turbine 
yaw controller perfectly aligns the wind turbine rotor with the wind direction, can be 
computed using Equation 4.5, 

 𝐸 = 𝑃 · 𝑡          [𝑘𝑊ℎ], (4.5) 

where, 𝑃  is the current power, in kW, and 𝑡 is the time that the turbine is running with 
the current power, in hours [38]. In this case, power is computed for each hour of the 
turbine’s lifetime, hence 𝑡 is 1 hour. Thus, the energy produced during each hour of the 
turbine’s lifetime is computed. With this, it is possible to compute the energy produced by 
the turbine in any given time interval of the turbine’s lifetime by summing the energy 
produced during the hours that compose that time interval. This way is more useful to the 
model so it can compute of energy losses in each hour, during downtimes that can happen in 
any given time. 

4.5 DTO+LMO Module 

The DTO+LMO module refers to the Logistics and Marine Operations (LMO) 
module of the DTOceanPlus software [58], developed by WavEC Offshore Renewables [59] 
within the DTOceanPlus H2020 project [60]. One of the functionalities of this open-source 
tool is to compute the total durations, including weather delays, of specific installation and 
maintenance operations based on predefined operation plans. In this dissertation, the LMO 
module is used to compute mobilization times, expected waiting times caused by weather 
delays, transit durations, and durations on site, based on specified operation plans. To 
compute the durations, this tool uses the same mean hourly wind speed and wave height 
data from the site considered in the base case. 
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4.5.1 Mobilization 

Mobilization is the time needed to prepare for the maintenance operation. This time 
may include time to rally the technicians and time to setup the vessel with the necessary 
parts and equipment. 

4.5.2 Waiting Times 

The waiting times are essentially the weather delays, in hours, that each operation 
has if it starts at a particular time. It depends on the weather conditions and on the size of 
the weather window needed to perform a certain maintenance task. As discussed previously, 
each vessel has its own weather conditions limiting its operation. These weather conditions 
are used as inputs for the DTO+LMO tool.  

4.5.3 Transit Time 

The transit time is computed with the vessel transit speed and distance from port. 
Assuming a 20 km/h vessel transit speed and a distance to port of 100 km, the transit time 
10 hours in total, 5 hours to site and another 5 hours from site. 

4.5.4 Duration on Site 

The duration on site includes the time for vessel positioning and the average repair 
time. The average repair times used are from Carroll et al. [35] but some values for major 
replacement maintenance type are adapted. Table 4.2 shows the adapted average repair 
times for major replacement of each sub-assembly, in hours. 

Table 4.2. Average repair times for each sub-assembly. Adapted from [35]. 

Subassembly 
Major Replacement [h] Major 

Repair 
[h] [35] 

Minor 
Repair [h] 

[35] Carroll [35] Used Info. 

Pitch / Hyd 25 24 WavEC internal report. 19 9 
Other Components 36 24 WavEC internal report. 21 5 

Generator 81 20 WavEC internal report. 24 7 
Gearbox 231 24 WavEC internal report. 22 8 
Blade 288 16 WavEC internal report. 21 9 

Grease / Oil / Cooling Liq. - - Failure rate is zero. 18 4 
Electrical Components 18 18 Same as [35]. 14 5 

Contactor / Circuit / Breaker / 
Relay 

150 24 WavEC internal report. 19 4 

Controls 12 12 Same as [35]. 14 8 
Safety - - Failure rate is zero. 7 2 
Sensors - - Failure rate is zero. 6 8 

Pumps / Motors - - Failure rate is zero. 10 4 
Hub 298 24 WavEC internal report. 40 10 

Heaters / Coolers - - Failure rate is zero. 14 5 
Yaw System 49 24 WavEC internal report. 20 5 

Tower / Foundation - - Failure rate is zero. 2 5 
Power Supply / Converter 57 24 WavEC internal report. 14 7 

Service Items - - Failure rate is zero. - 7 
Transformer 1 24 WavEC internal report. 26 7 
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The average repair time is constant throughout corrective and PdMs. The average 
repair time is defined as the amount of time, on average, that technicians spend repairing the 
turbine [35]. 

4.6 Maintenance Strategy Modules 

Both component level analysis and wind farm analysis use the same CM and PdM 
strategies. Although, the PdM strategy considers a slight exception in the predictive period, 
for the wind farm analysis to grant a more realistic approach. This exception will further be 
explored in the Overlapping Maintenance Exception 4.8.1 subsection, discussed further along 
this chapter. 

4.6.1 Corrective Maintenance Module 

In a CM strategy, as seen, maintenance actions are performed always after failure 
occurrence. It follows that, as a result, downtime will occur immediately after the failure. In 
the current analysis, once a failure has been identified, wind farm operators schedule 
corrective actions as soon as possible. It is thus considered that failure detection is perfect 
and immediate. It is considered that there are no other operations taking place at the site 
that could perform maintenance or inspections when that failure occurs. Finally, it is also 
considered that once the maintenance intervention at the turbine is completed, the turbine is 
immediately restored back to “full health”. Therefore, the downtime caused by failure 
occurrence will be equal to the total duration of the maintenance operation (including 
mobilization, preparation at port, waiting on weather, transit, and work at the turbine) but 
excludes the last transit back to port. In this case, the computation of downtime is given by 
Equation 4.6, 

 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑓𝑟𝑜𝑚 𝑆𝑖𝑡𝑒          [ℎ]. (4.6) 

The total duration of the maintenance operation and transit from site are time 
durations taken from DTO+LMO module, from the specific maintenance operation. The 
total duration is the total maintenance operation duration, which is the sum of all durations, 
waiting’s, transit, and mobilization time of a certain subassembly at a given hour time-
instance where failure occurred.  

Figure 4.2 shows how downtime can be visualized in the wind turbine operation time 
series. In Figure 4.2, the TTF-A is the generated TTF used to determine at what time the 
failure will happen (time of failure). Then, the downtime of that failure is computed and a 
new TTF, TTF-B, is used to determine when the next failure will happen (in the case of the 
wind farm analysis). The durations from the DTO+LMO module are represented in blue and 
how the downtime is computed, in red. The failure is represented by a red marker after TTF-
A, and before the downtime. 
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Figure 4.2. Corrective maintenance downtime. 

The CM module returns the downtime, energy loss costs, maintenance operation 
costs, and the present value of those costs associated with each failure. 

4.6.2 Predictive Maintenance Module 

Different predictive periods were considered in the analysis to estimate their impacts 
on maintenance scheduling and costs. In the context of the present work, the predictive 
period refers to how many days ahead a potential failure can be detected. This is a sensor-
based detection and is the output of a given fictitious predictive model, or algorithm, that 
would be able to know “x” days in advance when a failure will occur (failure prediction). In 
this work, it is assumed that failures are predicted with full certainty. Each predictive period 
is used to model an independent, and purely, PdM strategy, distinct only by this feature. All 
failures inside a PdM strategy use the same predictive period. Table 4.3 shows the five PdM 
strategies analyzed and their predictive periods. 

Table 4.3. Predictive periods considered. 

Maintenance Strategy Predictive Period 
PdM1 5 Days 
PdM2 10 Days 
PdM3 20 Days 
PdM4 40 Days 
PdM5 80 Days 

One of the objectives of the present dissertation is to estimate the sensitivity of 
offshore wind maintenance economics with different predictive periods. As such, the selected 
predictive periods are defined, regardless of whether current technology is capable of 
supporting such strategies. Still, recent research shows that generator faults can be predicted 
18 days ahead of time [18]. In another work, degradation of a wind turbine was successfully 
detected 44 days prior to failure [19]. Based on this, five different predictive periods were 
considered: 5, 10, 20, 40, and 80 days.  

With a PdM strategy, the failures are now predicted thus, the downtime caused by 
each failure can be reduced because it is already known in advance when the failure will 
occur, and wind farm operators can plan when the maintenance actions will take place. 
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Although, as seen, this may not be an easy task and simulation tools are used for logistic 
support. 

There are two scenarios when computing the downtime in the PdM module. In 
general, the downtime caused by a failure, with this maintenance strategy, will always be the 
duration on site (vessel positioning plus repair time), but there is an exception. Figure 4.3 
shows scenario 1 of the computation of downtime.  

 

Figure 4.3. Predictive maintenance downtime computation in scenario 1. 

The scenario 1 occurs when the predictive period is long enough to fit the total 
operation duration minus the transit from site and repair time, and also the selected time to 
start the maintenance operation (green marker in Figure 4.3) is far enough from the 
predicted failure (red marker) so that the technicians can get to site before the predicted 
failure occurs. The downtime in scenario 1 will always be the duration on site, composed by 
the repair time plus the vessel positioning time. In Figure 4.3, the durations from the 
DTO+LMO module are represented in blue, and how the downtime is computed, in red. The 
yellow marker represents when the failure is predicted. From the failure prediction to the 
predicted failure, it is considered the predictive period of that failure. Equation 4.7 shows the 
computation of downtime in scenario 1, simply given by, 

 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑆𝑖𝑡𝑒          [ℎ]. (4.7) 

The scenario 2 is modeling an exception that is slightly different. The predictive 
period may not be long enough to fit the total operation duration minus the transit from site 
and repair time, or the selected time to start the maintenance operation is too close to the 
predicted failure thus, technicians don’t have time to get to the wind turbine before the 
predicted failure happens. The downtime will, in this case, vary according to the selected 
starting scheduling of the maintenance operation. The downtime will start immediately after 
the predicted failure until the failure is repaired (after duration on site). Figure 4.4 shows 
scenario 2 of the computation of downtime. In Figure 4.4, the durations computed by the 
DTO+LMO module are represented in blue, while the calculated downtime is depicted in 
red. In this scenario, as the technicians cannot get to the turbine before failure occurs, it is 
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considered that the turbine fails at the predicted failure and therefore there is higher 
downtime than in scenario 1. 

 

Figure 4.4. Predictive maintenance downtime computation in scenario 2. 

Equation 4.8 shows the computation of downtime in scenario 2. 

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝. 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑓𝑟𝑜𝑚 𝑆𝑖𝑡𝑒 

− (𝑇𝑖𝑚𝑒 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 − 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑀𝑎𝑖𝑛𝑡. 𝑂𝑝. )         [ℎ]. (4.8) 

As downtime varies according to the time of start of maintenance operation and the 
time of predicted failure, there was a need to find an equation that would consider this. The 
Equation 4.8 computes the downtime by checking how much of the maintenance operation 
time was undertaken before the predicted failure to compute the remaining (minus transit 
from site) as downtime. 

The main goal of the PdM module is to reduce total costs. The total costs include the 
operation costs, and the energy loss costs. The module will analyze every hour of the 
predictive period and compute the total costs. The analysis is conducted by computing the 
downtime and total costs by simulating the start of the maintenance operation in that hour. 
After it analyzes all the hourly time instances in the predictive period, it selects the hour 
with the minimum total costs. When the minimum total costs are found, the optimized 
schedule is also found. It is at what time should the maintenance operation be initiated and 
consequently when the repair or replacement starts. 

4.6.3 Total Costs  

To compare the CM and PdM strategies, total costs are one of the key indicators 
used to see what benefits the latter might bring to the table. The total costs are computed 
the same way in both corrective and predictive strategies and computed for each failure. The 
total costs of each maintenance are a resultant of operation costs plus the energy loss costs, 
as presented in Equation 4.9. 

 𝐶 =  𝐶 + 𝐶            [€]. (4.9) 
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4.6.3.1 Operation Costs 

For each time that maintenance is needed on a wind turbine, there are operation 
costs associated with that maintenance that are highly correlated with the duration of the 
operation itself. Equation 4.10 shows how to compute the costs of that maintenance 
operation (𝐶 ), adapted from [14],  

 𝐶 = (𝑑 · 𝐶 ) + 𝐶 + 𝐶             [€], (4.10) 

where, 𝑑  refers to the maintenance operation duration, in days, 𝐶  to the vessel costs, 
in [€ 𝑑𝑎𝑦⁄ ], 𝐶   to the repair or replacement costs, in [€], and 𝐶  represent 
the costs related to the work of the technicians, in [€ 𝑑𝑎𝑦⁄ ]. For each subassembly’s failure 
where a maintenance task takes place, a specific spare part is consumed, technicians to 
perform that maintenance task are needed, and there is a selection of the vessel, port, and 
equipment. All these topics have associated costs. 

4.6.3.2 Vessel costs 

The vessel costs are included in the operation costs, as seen in Equation 4.10 and are 
dependent on the maintenance operation duration. The daily vessel costs themselves include 
the daily vessel charter costs and daily fuel costs.  

To estimate the daily vessel costs (𝐶 ) of each maintenance operation, Equation 
4.11 is used from [14],  

 𝐶 = 𝐶 + 𝐶            [€ 𝑑𝑎𝑦⁄ ], (4.11) 

where, 𝐶 , refers to the daily vessel charter rates and, 𝐶  to the daily fuel costs. 

Depending on, not only the vessel type needed for the operation, but also the vessel 
characteristics and capabilities and site market conditions, daily vessel charter rates (𝐶  
in [€ 𝑑𝑎𝑦⁄ ]) may vary. Contract duration and contract set-ups can also influence charter 
rates. The industry way of chartering the rates may be different for different types of vessels. 
For example, CTVs are usually charted based on duration of usage, but cranes usually are 
contracted in comprehensive service agreements.  

Table 4.4 summarizes the daily chart rate regressions’ functions of the used vessels 
considering the different input parameters that were identified for each type of vessel, based 
on Global Renewable Shipbrokers (GRS). The different types of maintenance require 
different types of vessels. The functions Table 4.4 were estimated based on real databases 
and excluded fuel and port costs [14]. Each function contains a mean squared error of the 
trendline, represented in Table 4.4 by R2. The error varies from 0.26059 to almost 1, giving a 
notion on how accurate these estimates are. In Table 4.4, LOA represents the vessel length 
overall.  
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Table 4.4. Daily charter rate regression curves of different vessel types. Source: [14]. 

Vessel Type Input Parameter Domain Validity Cost Function [€] R2 
CTV LOA (m) 15 ≤ 𝑥 ≤ 33 𝐶 =  −1.26𝑥  +  179.16𝑥 −  85.57 0.4729 

SOV with 
gangway 

No. passengers 
𝑥 < 60 
𝑥 ≥ 60 

𝐶 =  24000 
𝐶 = 50000 𝑁. 𝐷. 

SOV gangway 
relevant 

No. passengers 
𝑥 < 60 
𝑥 ≥ 60 

𝐶 =  24000 
𝐶 =  42000 𝑁. 𝐷. 

Propelled 
Crane Vessel 

Crane lift capacity 
(tons) 

4 ≤ 𝑥 ≤ 3300 𝐶 =  −5.44 · 10 𝑥 +  88.91𝑥 +  12714.58 0.9955 

In the analysis, one type of vessel was assigned to each type of maintenance. The 
CTVs were assigned to the minor repairs, SOV were assigned to major repairs and PCV to 
the major replacements. These types of vessels can easily be changed by the user in the input 
excel sheets. Table 4.5 shows the resultant inputs for each type of maintenance. Vessels are 
assumed to be always available when needed. 

Table 4.5. Vessel charter rates of each type of maintenance. 

Maintenance Type Vessel Input Parameter 𝑪𝒄𝒉𝒂𝒓𝒕𝒆𝒓 [€/day] 
Major Replacement PCV 𝑥 = 10999 tons (Crane lift capacity) 332515 

Major Repair SOV 𝑥 < 60 (No. passengers) 24000 
Minor Repair CTV 𝑥 = 21.79 m (LOA) 3220 

The daily fuel costs are composed of two elements, as can be seen in Equation 4.12, 

 𝐶 =  𝑓 ·  𝑝            [€ 𝑑𝑎𝑦⁄ ], (4.12) 

where, 𝑓  is the fuel consumption of the vessel, 𝑝  is the price of the fuel. Vessel 
consumption can depend on distance to shore, and vessel speed, but in [14] an estimation is 
made in its computation, seen in Equation 4.13, 

 𝑓 = 𝑇𝐼𝑃 · 𝐴𝐿𝐹 · 𝑆𝐹𝑂𝐶 · 24 ·  
1

1000
           [𝑡𝑜𝑛 𝑑𝑎𝑦⁄ ], (4.13) 

where, 𝑇𝐼𝑃 is the total installed power of the vessel in kW, 𝐴𝐿𝐹 is average load factor, 
assumed 80% as default as in [14], 𝑆𝐹𝑂𝐶 is the specific fuel oil consumption, assumed 210 
g/kWh as recommended by the Global Renewable Shipbrokers (GRS) [14]. 

The fuel price (𝑝 ) may vary with the oil market, but in [14] a reference value of 
515 €/ton was taken from the marine diesel oil in the port of Rotterdam. 

Table 4.6 summarizes the result parameters to estimate the vessel fuel costs for each 
type of maintenance. The total installed power of the vessels (TIP) is based on a report by 
WavEC [61]. 
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Table 4.6. Vessel fuel cost parameters. 

Maintenance Type Vessel TIP [kW] 𝒇𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 [ton/day] 𝑪𝒇𝒖𝒆𝒍 [k€/day] 
Major Replacement PCV 21125 8518 4387 

Major Repair SOV 9505 3832 1974 
Minor Repair CTV 1066 430 221 

4.6.3.3 Port Terminal Costs 

Each specific port around the world has its own costs and they can vary greatly with 
the type of contract established, contract duration, leased storage area and equipment. It is 
stated in [14], that port costs only represent about 0.5% of total operation costs on average 
for offshore wind projects. Thus, these costs were neglected. 

4.6.3.4 Equipment Costs 

The offshore operations are specialized work that may require specific equipment to 
undertake different types of repairs or replacement at component level. This equipment’s can 
be rented thus may have associated costs. However the maintenance types defined in [35] did 
not specify exactly what kind of maintenance tasks were included in each type of 
maintenance, due to its classification being defined only through material costs. In the 
analyses, equipment costs are then neglected to reduce noise and uncertainty that would be 
created by assigning equipment’s to the maintenance types. 

4.6.3.5 Spare parts Costs 

The spare parts costs, in Euros, are shown in Table 4.7.  

Table 4.7. Average repair costs of each subassembly. Adapted from [35]. 

Subassembly 
Major Replacement [€] Major 

Repair 
[€] [35] 

Minor 
Repair 
[€] [35] 

Carroll 
[35] 

Used Info. 

Pitch / Hyd 14000 696150 
Sum of Blade pitch and cooling and 

Hydraulic costs in [62]. 
1900 210 

Other Components 10000 10000 Assumed same as [35]. 2400 110 
Generator 60000 676685 Taken from [62]. 3500 160 
Gearbox 230000 1772250 Taken from [62]. 2500 125 
Blade 90000 701222 Taken from [62]. 1500 170 

Grease / Oil / Cooling Liq. - - Failure rate is zero. 2000 160 
Electrical Components 12000 12000 Assumed same as [35]. 2000 100 

Contactor / Circuit / Breaker / Relay 3500 13500 Assumed same as [35]. 2300 260 
Controls 13000 13000 Assumed same as [35]. 2000 200 
Safety - - Failure rate is zero. 2400 130 
Sensors - - Failure rate is zero. 2500 150 

Pumps / Motors - - Failure rate is zero. 2000 330 
Hub 95000 275570 Taken from [62]. 1500 160 

Heaters / Coolers - - Failure rate is zero. 1300 465 
Yaw System 12500 383520 Taken from [62]. 3000 140 

Tower / Foundation - - Failure rate is zero. 1100 140 
Power Supply / Converter 13000 668440 Cost of Power Electronics [62]. 5300 240 

Service Items - - Failure rate is zero. 1200 80 
Transformer 70000 525045 Cost of Electrical Connections [62]. 2300 95 
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Spare part costs (𝐶  ), that are also called component repair costs, are 
different for each subassembly and for maintenance types, and must be considered in the 
total operation costs. The average repair costs from [35], are for a 2 to 4 MW wind turbine. 
The turbine used in the Power Module has a rated power of 10 MW, thus it is necessary to 
adjust the major replacement costs. The minor and major repair costs are assumed to be the 
same as in [35]. Cost breakdown for a 10 MW wind turbine were found in [62]. Table 4.7 also 
shows how costs were adapted for major replacements. 

The costs presented in [35] only include the costs of the materials used during 
maintenance of a turbine, on average. Labor costs or compensation costs are not included. In 
[62], the costs are for factory new components. In the analysis, it is assumed that spare parts 
are always in stock. 

4.6.3.6 Technician Costs 

The number of technicians needed to repair different subsystems can vary, which 
leads to different technician costs. As seen in [35], the average number of technicians can 
vary from 1 to 10 technicians. The cost of technicians (𝐶 ) are then computed by 
Equation 4.14, 

 𝐶 = 𝑛 · 𝑝 ·  𝑑           [€ ℎ⁄ ],  (4.14) 

where, 𝑛  is the number of technicians, 𝑝  is the tariff charged by the 
technicians, and 𝑑  refers to the maintenance operation duration, in hours. Table 4.8 
contains the average number of technicians (𝑛 ) taken from reference [35]. 

Table 4.8. Average number of technicians. Source: [35]. 

 
Major 

Replacement 
[Technicians] 

Major Repair 
[Technicians] 

Minor Repair 
[Technicians] 

No Cost 
Data 

Pitch / Hyd 4.0 2.9 2.3 2.8 
Other Components 5.0 3.2 2.0 2.3 

Generator 7.9 2.7 2.2 2.4 
Gearbox 17.2 3.2 2.2 2.2 
Blade 21.0 3.3 2.1 2.6 

Grease / Oil / Cooling Liq. 0 3.2 2.0 2.0 
Electrical Components 3.5 2.9 2.2 2.4 

Contactor / Circuit / Breaker / Relay 8.3 3.0 2.2 2.0 
Controls 2.0 3.1 2.2 3.2 
Safety 0 3.3 1.8 2.0 
Sensors 0 2.2 2.3 2.7 

Pumps / Motors 0 2.5 1.9 2.5 
Hub 10.0 4.2 2.3 2.4 

Heaters / Coolers 0 3.0 2.3 2.7 
Yaw System 5.0 2.6 2.2 2.4 

Tower / Foundation 0 1.4 2.6 2.3 
Power Supply / Converter 5.9 2.3 2.2 2.7 

Service Items 0 0 2.2 2.2 
Transformer 1.0 3.4 2.5 2.8 



37 
 

The average number of technicians refers to the number of technicians required to 
perform the maintenance on the turbine, on average. 

The average salary for a wind turbine technician is 82 886 €/year, taken from [63]. 
With 261 working days in a year, a rough estimation was performed resulting in 
317.57 €/day. Assuming 12h shifts, the 𝑝  is 26.46 €/h. 

4.6.3.7 Energy Loss Costs 

The revenue generated by a wind turbine comes from the sale of the energy that it 
produces. The greater the production, the greater the revenue. If a wind turbine does not 
produce energy, due to a failure, and if there is wind resource available to do so, there are 
energy losses, that imply loss of revenue, associated with that downtime. This, from the point 
of view of O&M, can be seen as an opportunity cost that must be reduced just like the usual 
costs. Therefore, downtime reduction or availability maximization, is very important for 
O&M. 

The cost of energy (𝐶 ) can then be computed with Equation 4.15, 

 𝐶 = 𝐸 ·  𝑝            [€], (4.15) 

where, 𝐸  is the energy loss caused by downtime, and 𝑝  is the price that the 
energy could eventually be sold at if it were produced. The electricity price considered was 
0.1062 €/kWh. 

4.6.3.8 Depreciating Costs 

Each maintenance strategy module returns the total costs and the total costs in 
present value. The total costs are depreciated to the commissioning date after they are 
simulated for each failure. Equation 4.16 shows how total costs are depreciated, 

 𝑃𝑉 =
𝐹𝑉

(1 + 𝑟)
 , (4.16) 

where, PV is the present value (PV), in this case the total depreciated costs at the time of 
commissioning, FV the future value (FV), that is the total costs of a certain failure at the 
time of that failure. 𝑟 is the discount rate used, in this case the weighted average cost of 
capital (WACC), with value of 6% taken from a similar project [64], and 𝑛 is the number of 
periods between the time of the failure and the commissioning date. 

4.7 Availability Module 

The availability module was only used in the wind farm analysis to grant a higher 
approach to reality. The wind farm analysis is a simulation performed in the time domain 
thus the time-series builder creates time-series for each subassembly and maintenance type 
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using TTFs and downtimes. The TTFs are used to find the time of failures and the 
downtimes are a consequence of those failures. 

4.7.1 Time-Series Builder 

The time-series builder runs integrated in the code, failure-by-failure, even though it 
is represented as a separate module for clarity reasons. This means that it starts from the 
turbine commissioning time and keeps building the subassembly’s operation time-series after 
getting the results of each failure from the maintenance strategies modules until the turbine’s 
lifetime is over. After a TTF is generated in the reliability module, the time-series builder 
adds this time period to the end of the current time instance in the operation time-series of 
the current subassembly’s maintenance type. It sets a value of one where the TTF is added 
in the operation time-series. In the case of the CM strategy, the number of hours of 
downtime caused by that failure is added right after the TTF and the next TTF of the next 
failure generated is added after the downtime of the previous failure. In the case of the PdM 
strategy, it is a bit more complex. The TTF of the generated failure is added, then, when the 
PdM module assesses the failure, it returns the time when the downtime will happen. This 
downtime is always before, or at the end, of the TTF added. Thus, the TTF previously 
added is “clipped” to fit the scheduling set by the PdM module output and the downtime for 
that failure is added afterwards. Downtimes are represented in the operation time-series by 
zeros. Ultimately, after all subassemblies are simulated, the turbine operation time-series can 
be found by multiplying all the subassemblies operation time-series. 

4.7.2 Availability 

After the turbine operation time-series is created, to assess availability, one must 
count the number of ones and zeros in the operational time-series. Ones will represent the 
number of available hours and zeros the number of unavailable hours, for that turbine, in the 
turbine’s lifetime. In Equation 4.17 from [34], it is shown how to compute availability in 
general, 

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑡

t + 𝑡
. (4.17) 

 To compute the technical availability, the 𝑡  considered includes only the time 
that the turbine is operational according their design specifications, and 𝑡  includes 
only the time that the turbine/ subassembly is being maintained and the time when is down 
due to subassembly failure [34]. 

In the operational availability, 𝑡  includes the time that the turbine is 
operating according to design specifications, and 𝑡  includes the turbine maintenance 
and failure but also the downtime caused by the lack of energy output due to too low or too 
high wind speed conditions out of the power curve [34].  
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The energetic availability is computed differently than the two previous availabilities. 
It simply considers the amount of energy produced over the potential energy produced, given 
by Equation 4.18 from [34], 

 𝐸𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑃

𝑃
, (4.18) 

where, 𝑃  is the actual energy produced by the wind turbine in its lifetime, and 𝑃  
is the potential energy that could be produced by the wind turbine during its lifetime with an 
availability of 100% [34]. 

4.8 Wind Farm Analysis 

The main objective of this analysis is to quantify the benefits that a PdM strategy 
can bring at the wind farm level. This wind farm is composed of 20 turbines, as mentioned, 
with the same characteristics. Wind farm layout, moorings and cables are not considered. 
Figure 4.5 shows the diagram of the wind farm analysis. 

The diagram in Figure 4.5 shows how the model simulates a given wind turbine 
subassembly’s maintenance type. The reliability module simulates the subassembly’s 
maintenance type failures events by generating TTFs that are based on failure rates. Once a 
TTF is generated, it is sent to the availability module where the turbine operation time-
series is being created. With this, the time of failure is placed in the time-series. If a failure 
rate of a certain subassembly is very low (or even zero) the subassembly might never fail 
during the whole turbine’s lifetime.  

The power and DTO+LMO Operations modules provide inputs for the CM and PdM 
modules. The power module provides the energy produced during every hour, of the whole 
turbine’s lifetime. The DTO+LMO module contains the operation durations of time that the 
maintenance activities would take if it was performed in that hour, for all hours in the 
turbine’s lifetime. With these inputs, and time of failure, the CM strategy module can 
compute the downtime and total costs associated with each failure of a subassembly. The 
downtime is then returned to the availability module to be added to the operation time-series 
by the time-series builder. The PdM module, apart from downtime and costs, also returns 
the optimized scheduling for the maintenance of the failure. That aspect is considered by the 
time-series builder. Once the time-series builder finishes a subassembly’s lifetime operation 
time-series, the next subassembly starts being simulated. The process continues until it 
simulates all subassemblies of all the turbines. The time-series builder builds the time-series 
by associating the value of one, when the subassembly is operational and zero, when is not. 
Then, turbine availability can be computed. For the turbine availability, when a failure 
occurs in a certain subassembly, it is assumed that it causes the failure of the entire wind 
turbine. 
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Figure 4.5. Wind farm analysis diagram. 
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4.8.1 Overlapping Maintenance Exception 

In the case of the wind farm analysis, the PdM module was slightly refined. As the 
wind farm analysis is a simulation performed in the time domain, when considering the PdM, 
the predictive periods of two nearby failures may overlap. This can happen if the time 
interval between two failures is very short (small TTF) or if the predictive period for that 
maintenance strategy is very long. With a very short time interval between two failures, the 
model would look for the minimum total costs in overlapping predictive periods, which could 
result in the scheduling of two maintenance actions at the same time, for a given 
subassembly. In that case, the model is finding the same schedule when minimizing the total 
costs in the predictive period. Having two maintenances of the same subassembly at the same 
time is not a realistic modeling thus, an exception in the code was made. When the 
predictive period of a current failure overlaps the predictive period of the previous failure, the 
current failure’s predictive period is shortened from the end of the previous failure’s 
downtime to the current failure. This means that the predictive period of the current failure 
is equal to the TTF that generated it. 

4.9 Component Level Analysis  

The main objective of the component level analysis is to statistically quantify the 
variability of the total costs, when failures are scheduled at different times of the year, for 
each subassembly and maintenance type. On top of this, the analysis is also able to find 
statistically relevant results in the total cost breakdown of all scheduled failures of each 
subassembly’s maintenance types. Statistical benefits are then found in the total failure costs 
median results, of all failures. This analysis uses four of the same modules as the wind farm 
analysis, the power, DTO+LMO operation, the CM, and PdM modules. Figure 4.6 shows the 
diagram for the component level analysis. 

In a hypothetical turbine, composed by its subassemblies, 10500 failures are 
distributed throughout the months. A high number of failures is used to grant statistically 
relevant results, although 10500 failures are chosen due computational limitations. The 
failures are distributed the same way for every subassembly and for all its maintenance 
strategies. Thus, all the subassemblies are assumed to fail at the same time in this analysis, 
even throughout different maintenance strategies. As these failures are not reliability-based, 
there is no “memory” of failures occurring before, or after, the current failure in analysis. 
Each failure was analyzed independently. Once a failure is being analyzed it will run the CM 
module, followed by the PdM module with predictive period 1 and it repeats until the 
predictive period 5. The PdM module optimizes the maintenance schedule based on the 
minimization of the total failure costs, as explained previously. With this, failure results are 
computed for all maintenance strategies. 
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Figure 4.6. Component level analysis diagram. 
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Chapter 5: Results & Discussion  

This section is divided into two main parts where the results of the wind farm and 
component-level analysis are presented. The wind farm cost results are presented as 
discounted as the aim is to understand the total costs behavior within a more realistic 
modeling at wind farm level. In this case, the year where failures are generated is accounted 
in the total costs. However, the cost results for the component-level analysis are presented 
without depreciation. This was done because the aim was to find benefits at component level 
without the extra variability in the results, caused by having failures in different years.  

5.1 Wind Farm Analysis 

Results were computed in the context of a wind farm. The wind farm analysis is a 
simulation performed in the time domain where failures are dependent on each other and are 
reliability-based. 

5.1.1 Number of Failures 

One of the results of the wind farm analysis is a consequence of the way that the 
PdM strategy was modeled. The PdM module increased the number of failures that occur 
during the wind farm’s lifetime. This is enhanced for longer predictive periods as it can be 
seen with a linear tendency correlating the total number of generated failures with the 
predictive period. Figure 5.1 shows the results of the total number of generated failures for 
each predictive period.  

 

Figure 5.1. Total number of failures generated for each maintenance strategy. 



44 
 

The expected number of failures, marked as red in Figure 5.1, is based on the 
turbine’s total failure rate, the number of turbines, and the number of lifetime years, as 
shown previously in Equation 3.12. The number of failures for the CM (0 predictive period) 
is slightly lower than the expected number of failures. This is a result of the stochasticity of 
the TTFs generated by the reliability module.  

When applying a PdM strategy to a wind farm, the aim is to perform maintenance 
actions before the failure occurrence to reduce costs and downtime. The modeled PdM 
strategy is analyzes all the hours contained in the predictive period before a certain failure, 
and computing for each hour, the total costs to find the optimum schedule for the PdM 
action. With this, there is WUL of the subassemblies. For example, if the minimum total 
costs are found at the beginning of the predictive period, the WUL of the subassembly will 
be higher, when compared to the WUL in the case which minimum total costs are found 
towards the end of the predictive period. On top of that, if a subassembly has many failures 
throughout its lifetime, the PdM strategy is being applied to all those failures, which leads to 
more WUL (in a high or small way) with each failure. Thus, the subassembly will have more 
“room” to fail more times, until the end of the 20-year lifetime. This means that in a 
modeling scenario, that is time-based, there will be also more failures for simulations with 
longer predictive periods because they grant more flexibility to schedule maintenance actions 
further from the predicted failure, which can lead to higher WUL. The modeled CM strategy 
(the predictive period is zero) does not generate extra failures because in this case the RUL is 
fully utilized, and the failure always happens spontaneously. 

More extra failures were generated for the minor repair maintenance type than for the 
major repair, and major replacement. Also, the major replacement is the maintenance type 
with lower extra-generated failures. This is happening because the minor repairs have higher 
failure rates than the major repairs, and the major repairs, have higher failure rates than the 
major replacements. Maintenance types with higher failure rates have more extra-generated 
failures. The higher the failure rate of a subassembly, the higher the number of failures that a 
subassembly has, and consequently the higher total WUL caused by the PdM module. 

5.1.2 Failure Dephasing 

The wind farm analysis shows some other unexpected results, besides the extra-
generated failures. Similarly, to how there are extra-generated failures, those failures fall out 
of phase when comparing different maintenance strategies. In the CM case, failures happen 
spontaneously, and maintenance actions are only undertaken after that. When PdM is 
applied to a failure, maintenance actions are undertaken before the failure occurs. This means 
that the subassembly can get back to “full health” earlier when compared to the CM case. 
When the TTF used to model the next failure is generated, it is added to the point where the 
subassembly previously got back to “full health”. This also means that the TTF will be out 
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of phase when compared with its “twin” TTF in the CM strategy. Ultimately, the next 
failure will also be out of phase with its “twin” failure in the CM strategy because the TTF 
that generated that failure is already out of phase. This happens for every failure (except the 
first failure) of every PdM strategy. The greater the predictive period, the greater the shift 
can happen. With this, even though, for example in Figure 5.1, the number of generated 
failures for 5-days predictive period is very close to the number of generated of 10-days 
predictive period, all the failures, between these two maintenance strategies, happen at 
different times (except the first failure). 

5.1.3 Wind Farm Average Turbine Availabilities 

Part of the wind farm analysis results are the three availabilities, previously reviewed. 
These availabilities were found for each turbine, for their whole lifetime, and all their 
simulated maintenance strategies, and then the turbine average was computed. Figure 5.2 
shows how the availabilities vary with the predictive period of each maintenance strategy. 

 

Figure 5.2. Wind farm average turbine availabilities. 

All the three availabilities have their lowest value for a CM strategy (where the 
predictive period is zero). For a PdM strategy with a predictive period of 5 days, there is a 
significative increase in all three availabilities. This increase represents the highest variation 
in the availabilities between the maintenance strategies.  

The technical availability for CM has a value of about 0.956. There is a big increase 
to 0.989, in the 5-day predictive period, and hits a practically constant value of about 0.99 
from a 10-day predictive period and on. It is only seen decreasing, in an extremely small 



46 
 

amount (still at about 0.99), for a predictive period of 80 days due to an increase in 
generated failures. 

The operational availability follows a similar tendency as the technical availability. 
This is explained because the only difference between the two availabilities is that the 
technical availability doesn’t consider the downtime caused by the hourly mean wind speed 
being outside of the power curve. Although, there is a slightly higher increase of operational 
availability in the PdM strategies when compared with the technical availability. This may 
be happening because the PdM strategy is optimizing the scheduling of maintenance to times 
where energy production is low or zero. The power output when the mean hourly wind speed 
is out of the power curve is zero, thus the PdM strategies are scheduling the downtime to 
these times. This translates in a small increase in the operational availability when compared 
with the technical availability. 

The energetic availability is practically maximized for a predictive period of 20 days. 
The fact that the energetic availability is increasing means that the PdM strategy modeled is 
optimizing the scheduling of maintenance actions for times with low or zero energy 
production, for example, times when the mean hourly wind speed is outside of the power 
curve. The scheduling is so optimized that there is very low energy loss, when compared with 
the huge amount of energy produced, during the whole turbine’s lifetime. 

5.1.4 Wind Farm Lifetime Total Costs 

Each failure costs were depreciated from the failure time to the commissioning date. 
The sum of all depreciated failure costs, of all the subassemblies of all turbines, is performed. 
Ultimately, the total costs of the wind farm are presented in Figure 5.3, for different 
predictive periods. 

 

Figure 5.3. Total costs PV variation with predictive period. 
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In general, total costs variation, along the predictive periods, show a decreasing trend 
from 0 to 20 days. The largest cost variation occurs when changing from a purely corrective 
maintenance strategy (equivalent to a predictive period of zero), to a predictive maintenance 
strategy with a predictive period of 5 days. This variation decreases with the predictive 
period and arrives at the lowest total costs in the predictive period of 20 days. From 20 to 80 
days, the trend shows an increase in total costs.  

Even though Figure 5.3 shows a clear advantage when implementing predictive 
maintenance, results show a slight increase in total lifetime costs for higher predictive periods 
(40 and 80 days). This increase can be explained by the additional number of failure events 
generated by the model, as described before. Even though total lifetime costs are increasing 
for 40 and 80 days, this increase is not very big. A 40-day predictive period generated 54 
additional failures than for a predictive period of 20 days. This is translating into an increase 
of about 350 thousand euros in total lifetime costs. For example, the cost of a single blade 
replacement is 701222 €, therefore a single additional failure generated for a blade 
replacement would surpass the 350 thousand euros that are associated with 54 additional 
failures. The increase in cost represented in Figure 5.3 is very small compared with what 54 
more failures could cost. This is because the 54 extra-generated failures come mainly from 
the minor repair and major repair maintenance types, where the component repair costs are 
extremely smaller (170€ and 1600€, respectively) than the major replacements. As seen 
previously, the minor repair maintenance type has higher failure rates, which generate more 
extra-generated failures than the major replacements (with lower failure rates), for longer 
predictive periods. 

5.1.5 Wind Farm Base Case Convergence 

In order to find more accurate results, several base case simulations were performed in 
the wind farm analysis, each associated with a different computational seed of random 
numbers for identification. This was done to ensure that the base case was representative of 
different simulation scenarios.  

Figure 5.4 shows the statistical results of different seeds for the total lifetime costs 
and their variation with the predictive period. 

Based on the percentiles, it can be seen that there are some variations along the 
different base cases. The stochasticity of the TTFs generation is causing different total 
lifetime costs each time the wind farm simulation is performed. The chosen base case is 
identified with a seed of 59 and was chosen based on the total cost median (Base Cases p50) 
to be representative of the 18 different base case simulations scenarios. 
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Figure 5.4. Total cost statistics of the 18 base case simulations. 

5.1.6 Wind Farm Sensitivity Analysis  

To assess the sensitivity of the wind farm analysis, some parameters were varied. The 
variations of the parameters were made in minus and plus 50% of all those parameters 
values. Varied parameters include number of turbines, failure rates, WACC, component 
repair costs, and electricity price. The impact of these variations in the wind farm total costs 
for different maintenance strategies, when compared with the base case, are presented as a 
tornado chart, in Figure 5.5. 

 

Figure 5.5. Wind farm analysis tornado chart. 
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The wind farm analysis seems to be slightly more sensitive when the number of 
turbines is increased (about 57%), than when the number of turbines is decreased (about 
52%). These values are almost constant throughout all maintenance strategies. 

The increasing in failure rates by 50% is causing an increase of about 48% in total 
costs. This decrease is practically constant throughout all maintenance strategies. Decreasing 
the failure rates by 50% is causing about a 47% reduction in total costs for CM. 

The increase in the WACC by 50% is causing a decrease of about 30% in the total 
costs. When the WACC increases it causes total costs to be greatly discounted which will be 
translated into lower costs. The WACC decrease by 50% is causing an increase of about 25%. 
These values are practically constant throughout all maintenance strategies. 

The impact of the component repair costs, when these vary by 50%, on the total costs 
are for the CM of about 12%. The impact for PdM strategies is almost constant, about 15%. 
The PdM strategies are reducing vessel, technician, and energy loss costs, but they cannot 
reduce component repair costs. This means that for PdM strategies, component repair costs 
have a greater percentual contribution in the total costs. Thus, the model is more sensitive to 
a variation in component repair costs for a PdMs than for a CM. 

The sensibility of the energy price is low in the CM. Varying the energy price 50% 
causes a shift of about 6% in the CM’s total costs. The sensitivity is decreased greatly for a 
5-day predictive period to about 1% and reaches about 0% in the following predictive 
periods. This phenomenon is happening because the PdM is aiming to reduce energy loss 
costs. The energy loss costs are based on the energy losses and the energy price. The PdM 
minimizes the energy losses by scheduling maintenance actions to times when energy 
production is low or null. Thus, if all the schedule is optimized, increasing the energy price 
will not have an impact on total lifetime costs because the energy loss is already low. 

5.2 Component Level Analysis 

The component level analysis aims to statistically quantify the variability of the total 
costs when failures are distributed at different times of the year, for each subassembly and 
maintenance type. On top of this, it was also found statistically relevant results in the total 
cost breakdown accounting all lifetime failures of each subassembly’s maintenance types. 
Statistical benefits are then found in the total costs median results, accounting for all 
scheduled failures’ total costs. In this analysis, due to the high number of results, it is 
impossible to discuss them all. The results of component level analysis for the blade 
subassembly are presented and discussed, being one of the most expensive, but also 
interesting subassemblies. The remaining results of the total cost benefits for other 
subassemblies are presented in Table 5.1 to Table 5.3, in the Total Costs Benefits section. 
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5.2.1 Monthly Total Costs 

Plots with the statistical monthly total cost results are made that considered all 
maintenance strategies in order to access the annual variability of the blade subassembly. 
Total cost results of failure events that were distributed throughout the year are grouped by 
month. The monthly total costs based on the median, for the other subassemblies, 
maintenance types and maintenance strategies, are presented in Appendix A.1 

Figure 5.6 shows how total costs vary throughout the year, for different maintenance 
strategies for blade replacement. 

 

Figure 5.6. Monthly total costs of blade replacement. 

It can be seen, in Figure 5.6, that the mean total costs of CM have a tendency 
throughout the year, where total costs are increasing from the summer to the winter months. 
The median (p50) also have a small, but similar tendency throughout the year. The annual 
variability along the maintenance strategies is greatly reduced. From CM to PdM1 strategy, 
annual variability is reduced. This is due to the optimizations made by the PdM strategy. 

Further exploration was made in the blade replacement results. An example is shown 
in Figure 5.7, with the tendencies of data related to blade replacement. The data includes the 
monthly mean total costs for the modeled maintenance strategies, the monthly mean 
potential for energy production, and the monthly mean weather delays (waiting’s). 
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Figure 5.7. Monthly mean total costs, monthly mean potential energy production, and monthly mean weather 
delays of blade replacement. 

The monthly mean total costs are the same as represented in Figure 5.6. These costs 
in the CM follow a very similar tendency as the monthly mean weather delays. It can be seen 
that monthly mean weather delays are increasing from summer to winter months. Such a 
tendency has a correlation with the monthly mean total costs because greater weather delays 
cause greater vessel and technician costs in the maintenance operation. 

In order to calculate the revenue losses when downtime occurs, the potential energy 
production based on the available wind speed and turbine power curve is being computed. It 
follows that, downtimes during time periods with higher potential for energy production will 
result in higher total costs, which include the opportunity cost caused by downtime. The 
tendency of the monthly mean potential energy production is also increasing near the winter 
months. However, it seems to be less correlated with the total costs but, for example, in the 
month of May it can be seen that the weather delays are decreasing, but there is an increase 
in the mean energy production that may be having a slight impact in the total costs for CM. 

The effects of weather delays and downtime during high energy production, in the 
monthly mean total costs, are being minimized for maintenance strategies with higher 
predictive periods. 

Figure 5.8 shows how the monthly total costs vary throughout the year, for different 
maintenance strategies, for the blade major repair. For the major repair of the blade, it can 
be seen that the CM annual variability of the total costs is higher (in percentage) in the 
summer months, when compared with the blade replacement. Thus, annual variability 
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follows a more defined tendency. The total costs variability is decreasing alongside with the 
maintenance strategies, only stabilizing in the PdM4.  

 

Figure 5.8. Monthly total costs of blade major repair. 

Figure 5.9 shows how the monthly total costs vary, with the different maintenance 
strategies, for blade minor repair.  

 

Figure 5.9. Monthly total costs of blade minor repair. 
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The results for the minor repairs of the blade show the same behavior as the previous 
maintenance types, however, the monthly total costs variability is higher for the CM. The 
annual variability is even more noticeable for this maintenance type. The CM of blade minor 
repair contains the highest decrease (in percentage) in the monthly total costs, when 
compared with blade replacement and major repair. 

5.2.2 Total Costs Breakdown 

The model computes the breakdown of the total failure costs (total costs) associated 
with each subassembly. This means that statistical results were found for all subassemblies 
and their different maintenance types (minor repair, major repair, and major replacement), of 
the total costs of the 10500 scheduled failures. The breakdown of those costs is plotted in the 
following figures for the blade subassembly and its three different maintenance types. The 
aim is to have a sense of how much each cost element impacts the total costs of a failure.  

Figure 5.10 breaks down the total failure costs of blade replacement, showing there is 
very low variability in the total costs of the blade replacement.  

 

Figure 5.10. Cost breakdown of blade replacement. 

Note: The total costs are the sum of the total operations costs with the energy loss costs. The total 
operation costs are the sum of the vessel costs, component repair costs, and technician costs. 
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In Figure 5.10, low variability is also seen throughout all the cost elements that 
compose the total costs, namely the vessel, component repair, technicians, and energy loss 
costs. For a 5-days predictive period (PdM1) there is a total cost median (p50) decrease of 
1.9%, when compared to the CM strategy. For the 10-days predictive period (PdM2), these 
benefits are kept constant. There is only a slight increase in the benefits obtained by using 
the median, from 1.9% to 2%, in the 20-days predictive period (PdM3) and these are 
constant for the following two predictive periods, 40-days (PdM4) and 80-days (PdM5). 
Results show that, for a blade replacement, the contribution of the total operation costs for 
the total costs is higher than the contribution of total energy loss costs. Within the total 
operation costs, the largest fraction can be attributed to vessel costs (including chartering 
and fuel), which are particularly high because PCV is used in the blade replacement 
operation. The component repair costs take second place in this contribution. Component 
repair costs are high because the replacement of a blade itself is expensive. The technician 
and energy loss costs have a small contribution to the total costs, in this maintenance type. 

Figure 5.11 shows the cost breakdown of the total failure costs of blade major repair. 

 

Figure 5.11. Cost breakdown of blade major repair. 

Note: The total costs are the sum of the total operations costs with the energy loss costs. The total 
operation costs are the sum of the vessel costs, component repair costs, and technician costs. 
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The variability of the total costs for CM is small, as can be seen in Figure 5.11. 
However, this variation is higher (in percentage) than for the blade replacement. This 
variability is greatly decreasing with the predictive period. For a predictive period of 5 days 
(PdM1), the total cost variability decreases by about one fourth of the CM total cost 
variability, and it is minimal from the 20-days predictive period (PdM3) to the 80-day 
(PdM5). The major contributor element to this variability is the energy loss costs. The 
variability of the energy loss costs is higher for the CM and is decreasing with the predictive 
period because the PdM module is optimizing the scheduling based on minimum costs. These 
minimum costs include the energy loss costs and its being optimized by scheduling the 
maintenance downtimes for times where energy production is low or zero, which is resulting 
in less variability in the energy loss costs of each failure caused by the impact of extreme 
environmental conditions in the failures downtime. This optimization is greatly enhanced in 
higher predictive periods; hence, the results will become constant along the predictive period. 

For major repair of the blade, results show that there is a slightly higher decrease (in 
percentage) in the median total costs than for blade replacement. From CM to PdM1 there is 
a decrease of 14.9% in the median (p50) total costs. This decrease continues until it becomes 
constant in PdM3 with a decrease of 16.2%, when compared to CM. 

For CM, the energy loss cost contribution for the median total costs is higher than for 
the blade replacement, which is translating into a higher decrease when these costs are 
minimized by the PdM module. Even just for a 5-day predictive period (PdM1), energy loss 
costs decrease substantially. These are even further minimized in the following PdM 
strategies. The contribution of the vessel costs seems to be almost constant for the along all 
maintenance strategies, even though there might be a bigger decrease from CM to PdM1, but 
in Figure 5.11 it is not very evident. The contribution of the component repair costs, and 
technician costs seems to be almost constant across all maintenance strategies, in Figure 5.11. 

Figure 5.12 shows the cost breakdown of the total failure costs of blade minor repair. 
In this maintenance type, there is the highest variability in the total costs, when comparing 
with the other maintenance types of the blades subassembly. As also seen in the major 
repair, the energy loss costs are the main source of this variability.  

The total costs decrease tendency, along the predictive period, can be better seen for 
minor repair. The benefits from a CM to a PdM1 in the median total costs are 59.3%, which 
is a much higher benefit than for the blade replacement, or even the major repair. The 
benefits are constant from PdM2 and on, with a 60.2% decrease in the median total costs. 

The total costs are mainly impacted by the energy loss costs in the CM strategy. The 
energy loss costs are greatly reduced even just for a 5-day predictive period (PdM1). The 
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other costs of elements, considered in the total costs, seem to be almost constant along the 
predictive periods, in Figure 5.12. 

 

Figure 5.12. Cost breakdown of blade minor repair. 

Note: The total costs are the sum of the total operations costs with the energy loss costs. The total 
operation costs are the sum of the vessel costs, component repair costs, and technician costs. 

5.2.3 Total Costs Benefits 

To know what the logistical benefits in the component-level analysis for each 
subassembly’s maintenance type are, the median total costs, from all the scheduled failures, 
were computed. From these, the PdM benefits were computed by benchmarking them against 
each individual CM result. With this, the median percentual decrease in total costs was 
found. The results in the total cost breakdown showed that the median benefits of the total 
costs can vary greatly between different maintenance types, thus maintenance types are 
presented separately. 

Table 5.1 summarizes the computed benefits for the median total costs of the 
replacement maintenance type. In the major replacement maintenance types, it can be seen a 
small percentual decrease in the median total costs. The median total costs decrease, for the 
replacement maintenance type, vary with a PdM strategy from 1.4% to 3.2% Even though 
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the percentual decrease is small, these results represent high-cost savings because the 
replacement of subassemblies is associated with high total costs. 

Table 5.1. Median logistic total costs benefit for each subassembly’s replacement of a predictive maintenance 
strategy comparing to its own corrective maintenance. 

Subassembly’s Replacement 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade Replacement -1.9 -1.9 -2.0 -2.0 -2.0 
Contactor/Circuit Breaker/Relay Replacement -2.6 -2.8 -2.8 -2.9 -2.9 
Controls Replacement -3.0 -3.1 -3.2 -3.2 -3.2 
Electrical Components Replacement -2.5 -2.7 -2.7 -2.7 -2.7 
Gearbox Replacement -1.4 -1.5 -1.5 -1.5 -1.5 
Generator Replacement -1.9 -2.0 -2.0 -2.1 -2.1 
Hub Replacement -2.3 -2.5 -2.5 -2.5 -2.5 
Other Components Replacement -2.6 -2.8 -2.9 -2.9 -2.9 
Pitch/Hyd Replacement -1.9 -2.1 -2.1 -2.1 -2.1 
Power Supply/Converter Replacement -1.9 -2.1 -2.1 -2.2 -2.2 
Transformer Replacement -2.1 -2.2 -2.3 -2.3 -2.3 
Yaw System Replacement -2.2 -2.4 -2.4 -2.4 -2.4 

Table 5.2 summarizes the computed benefits for the median total costs of the major 
repair maintenance type.  

Table 5.2. Median logistic total costs benefit for each subassembly’s major repair of a predictive maintenance 
strategy comparing to its own corrective maintenance. 

Subassembly’s Major Repair 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade Major Repair -14.9 -15.8 -16.2 -16.2 -16.2 
Contactor/Circuit Breaker/Relay Major Repair -14.5 -15.3 -15.6 -15.6 -15.6 
Controls Major Repair -18.8 -19.5 -19.6 -19.6 -19.6 
Electrical Components Major Repair -18.8 -19.5 -19.6 -19.6 -19.6 
Gearbox Major Repair -15.1 -16.0 -16.4 -16.5 -16.5 
Generator Major Repair -15.3 -16.4 -16.8 -17.0 -17.0 
Grease/Oil/Cooling Liq. Major Repair -14.4 -15.1 -15.3 -15.3 -15.3 
Heaters/Coolers Major Repair -18.9 -19.6 -19.7 -19.7 -19.7 
Hub Major Repair -13.3 -15.1 -15.9 -16.5 -16.8 
Other Components Major Repair -14.9 -15.8 -16.1 -16.2 -16.2 
Pitch/Hyd Major Repair -14.6 -15.4 -15.6 -15.7 -15.7 
Power Supply/Converter Major Repair -18.4 -19.1 -19.2 -19.2 -19.2 
Pumps/Motors Major Repair -17.9 -18.3 -18.3 -18.3 -18.3 
Safety Major Repair -16.8 -16.9 -16.9 -16.9 -16.9 
Sensors Major Repair -16.6 -16.6 -16.6 -16.6 -16.6 
Tower/Foundation Major Repair -15.4 -15.4 -15.4 -15.4 -15.4 
Yaw System Major Repair -14.7 -15.5 -15.8 -15.9 -15.9 

The results of major repair maintenance type include total cost benefits from 13.3% 
to 19.6%. Using a PdM strategy is more advantageous in the major repair than for the 
replacements, when looking at the percentual total cost decrease. Although, the total cost 
decrease in the replacement is higher, in euro, because these represent much higher costs. 

Table 5.3 summarizes the computed benefits for the median total costs of the minor 
repair maintenance type. Minor repairs have the greatest percentual benefits when compared 
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to their total cost for a CM. The costs drop can be between 56.4% and 60.5%. Noting that 
these cost benefits, in euros, are much lower than for other maintenance types. 

Table 5.3. Median logistic total costs benefit for each subassembly’s minor repair of a predictive maintenance 
strategy comparing to its own corrective maintenance. 

Subassembly’s Minor Repair 
Variation in Total Costs [%] 

PdM1 PdM2 PdM3 PdM4 PdM5 
Blade Minor Repair -59.3 -60.3 -60.3 -60.3 -60.3 
Contactor/Circuit Breaker/Relay Minor Repair -56.7 -56.8 -56.8 -56.8 -56.8 
Controls Minor Repair -58.7 -59.4 -59.4 -59.4 -59.4 
Electrical Components Minor Repair -57.5 -57.7 -57.7 -57.7 -57.7 
Gearbox Minor Repair -58.8 -59.6 -59.6 -59.6 -59.6 
Generator Minor Repair -58.3 -58.9 -58.9 -58.9 -58.9 
Grease/Oil/Cooling Liq. Minor Repair -57.2 -57.3 -57.3 -57.3 -57.3 
Heaters/Coolers Minor Repair -56.7 -56.9 -56.9 -56.9 -56.9 
Hub Minor Repair -59.3 -60.5 -60.5 -60.5 -60.5 
Other Components Minor Repair -57.9 -58.1 -58.1 -58.1 -58.1 
Pitch/Hyd Minor Repair -58.9 -59.8 -59.8 -59.8 -59.8 
Power Supply/Converter Minor Repair -58.2 -58.7 -58.7 -58.7 -58.7 
Pumps/Motors Minor Repair -57.1 -57.2 -57.2 -57.2 -57.2 
Safety Minor Repair -56.4 -56.4 -56.4 -56.4 -56.4 
Sensors Minor Repair -58.6 -59.3 -59.3 -59.3 -59.3 
Service Items Minor Repair -58.5 -59.0 -59.0 -59.0 -59.0 
Tower/Foundation Minor Repair -56.7 -56.9 -56.9 -56.9 -56.9 
Transformer Minor Repair -57.9 -58.4 -58.4 -58.4 -58.4 
Yaw System Minor Repair -57.4 -57.6 -57.6 -57.6 -57.6 

Results show that the biggest decrease in median total costs is for the maintenance 
strategy with a predictive period of 5 days. Even though this may seem like a small window 
to perform PdM, it is already of great advantage to use this strategy. This is seen throughout 
all subassembly’s maintenance types. The total costs still decrease with longer predictive 
periods, but not to such a degree as from the CM to the first PdM strategy. 
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Chapter 6: Conclusions and Future Work 

As two separate, but complementary, analyses were carried out to quantify the 
potential logistic benefits of a PdM strategy, the main conclusions are also presented 
separately. 

6.1 Wind Farm Level 

 The technical, operational, and energetic lifetime availabilities can be increased with 
longer predictive periods. However, the largest increase occurs from CM to PdM1, in 
all three availabilities. The scheduling optimization made by the PdM module reduces 
downtimes and energy losses. This optimization is already quite noticeable on the 
availabilities of a 5-day predictive period (PdM1). The computed energetic 
availability is reaching values of almost 1 from a 20-day predictive period and on. 

 An important benefit of the PdM strategy is the total cost reduction. The lowest 
total costs were found for a 20-day predictive period. However, these results are close 
to the results of the 10-day predictive period. On the other hand, major benefits in 
the total costs can already be seen with a change from CM to a 5-day predictive 
period. 

 Higher failure rates in combination with longer predictive periods is causing extra 
failures to be generated at the end of a subassembly’s lifetime. The PdM module 
optimizes maintenance scheduling of each failure based only on total costs 
minimization. The maintenance is scheduled to the exact hour with more economical 
advantages with the aim of finding the maximum benefits. With this, the PdM 
module can waste a portion of the useful life of the subassembly by scheduling 
maintenance actions to times before the failure occurs spontaneously. This is 
enhanced in longer predicted periods because there is more flexibility to schedule 
maintenance actions ahead of the failure. The total amount of WUL, at the end of 
each subassembly’s lifetime, is correlated with the number of failures, that a 
subassembly has during its lifetime. High failure rates are the basis for modeling a 
high number of failures. On top of that, the maintenance of each of those failures, 
when optimized by the PdM module, is causing the waste of a portion of the 
subassembly’s useful life with each failure. Ultimately, at the end of the subassembly’s 
lifetime there will be “room” to generate extra failures beside the ones expected from 
the failure rate.  

 The impact of the extra-generated failures on total costs is higher in longer predictive 
periods (40 and 80 days), where total costs increase. The total costs in shorter 
predictive periods decrease until a 20-day predictive period because the cost 
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optimization made by the PdM module is compensating the additional costs caused 
by the extra-generated failures. Taking in consideration that shorter predictive 
periods have also less extra-generated failures than longer predictive periods. 

6.2 Component level 

 The time of the year in which a failure event takes place has significant impacts on 
the costs in a CM strategy. As expected, costs are typically higher during the winter 
season and lower during the summer season. These costs are reduced with the PdM 
strategy as the predictive periods increase, for each subassembly. Costs are greatly 
reduced for longer predictive periods because there is more flexibility to schedule 
maintenance actions in times where the energy losses and weather delays (waiting 
times) are lower. This is consequently translated into lower energy losses, as well as 
vessel and technician costs, which results in lower total failure costs. 

 The CM cost breakdown varies mainly between different maintenance types 
(replacement, major repair, and minor repair). The contribution of the energy loss 
costs to the total costs is minimal in the blade replacement; however, it becomes 
higher for major repair and critical for minor repairs. The PdM strategy is able to 
greatly reduce energy loss costs. The vessel and technician costs can also be reduced, 
but on a much lower scale. Component repair costs cannot be reduced because these 
are fixed for each failure. 

 Component-level results show that different subassemblies and their maintenance 
types have different logistic benefits. Major differences were found between different 
maintenance types, where the median total costs of the replacements vary from 1.4% 
to 3.2%, major repairs from 13.3% to 19.6%, and minor repairs from 56.4% to 60.5%. 
The total cost benefits are increasing from replacement to minor repair maintenance 
types. When the median total cost benefits are translated to euro, the replacement of 
subassemblies has much higher benefits, in terms of costs, than major repair, and 
these are even higher than minor repairs. Ultimately, the cost savings caused by a 
PdM strategy are higher in replacements, followed by major repairs, and minor 
repairs. 

6.3 Future Work 

 The model can be modified to perform the PdM on a single failure and be used in a 
practical application to schedule predictive maintenance actions in real-time. A failure 
can be predicted in real-time, for example, from the output (RUL) of a sensor-based 
failure prediction algorithm for a subassembly or wind turbine. With this, the 
modified model would take the predicted failure as input and find the optimum 
maintenance schedule (to take place in future). It can be done in combination with 
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forecast weather data, for example, a Markov Model trained on historical wind speeds 
and wave heights, as input to the power, and DTO+LMO modules. 

 The model assumes constant failure rates to generate the TTFs, in the reliability 
module. This feature can be further upgraded to generate TTF based on time-variable 
failure rates that build the bathtub curve, in reliability engineering, if the failure rate 
distribution is well known for a certain subassembly or turbine. This also includes the 
transition points, where the three distributions change, in the bathtub curve. 

 The failure rates, average repair times, average technicians and maintenance 
categories used in this thesis are based on a 2015 study from a non-disclosed site. 
These were used because of data accessibility and data completion. Nowadays, wind 
farms have bigger turbines and are more technologically advanced. Finding recent 
and updated data was a barrier for this study, but that could be further explored to 
get more accurate results for current wind farms. 

 The model considers that each turbine is independent. This means that each 
maintenance operation is “blind” to what is happening in the rest of the wind farm. 
Further model development could include PdM combined with group maintenance, 
which imply, for example, that the same vessel could be deployed to perform several 
maintenance actions on one or more wind turbines, and not just one, as assumed. 
This has the potential to greatly reduce O&M costs, and consequently, increase the 
logistic benefits of a PdM strategy. 

 The PdM module’s scheduling optimization is based on minimization of the total 
costs, for each failure’s maintenance. It will schedule maintenance actions where those 
costs are minimal. The current method results in waste of useful life of subassemblies, 
which ultimately, can lead to an increase in failures by the end of the wind farm’s 
lifetime. This optimization could be further developed to minimize the WUL of the 
subassembly by setting an acceptable cost margin and schedule maintenance actions 
the closest it can to the predicted failure without greatly compromising the costs. For 
example, if the costs of a maintenance, that is performed at the beginning of the 
predictive period, are very similar to the costs of a maintenance that is performed in 
the middle of the predictive period. In this case, the model is choosing the 
maintenance scheduling that has the lowest costs without assessing the WUL. With a 
cost margin integrated in the optimization, the model could assess which maintenance 
schedule minimizes the WUL of the subassembly, while minimizing the costs inside 
the defined margin. 

 The model can be further developed by creating a spare-parts module. This module 
would contain the spare parts stock and could be monthly or annual based. The 
modeling of stock would also support the modeling of spare parts procurement. When 
stock is not available for a specific spare part, its procurement must take place, which 
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will cause greater downtimes and consequently greater energy loss costs. It is 
expected that a PdM will bring even greater benefits when considering spare part 
procurement. 

 There are some other assumptions that could be further explored. The waiting of 
vessel, waiting on crew, and waiting on crew rest were neglected. In order to model 
these remaining operation delays, the model could be expanded to work with some 
more modules. 
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Appendix A  

A.1. Monthly Median Total Costs 

Blade 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2721024 2647325 2640200 2638521 2638137 2638137 
Feb 2705133 2642914 2639070 2638385 2638137 2638137 
Mar 2689805 2640998 2638956 2638234 2638137 2638137 
Apr 2679768 2639641 2638355 2638137 2638137 2638137 
May 2680771 2640124 2638339 2638137 2638137 2638137 
Jun 2673646 2639176 2638182 2638137 2638137 2638137 
Jul 2666844 2639118 2638137 2638137 2638137 2638137 
Aug 2674212 2639414 2638189 2638137 2638137 2638137 
Sep 2689496 2640807 2638487 2638137 2638137 2638137 
Oct 2707124 2643585 2639275 2638238 2638137 2638137 
Nov 2711045 2643817 2639479 2638621 2638170 2638137 
Dec 2718598 2645563 2640029 2638432 2638137 2638137 

 
Blade Major 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 179142 142780 140205 138304 137648 137426 
Feb 172944 140858 138649 138053 137509 137426 
Mar 162977 140048 138702 137688 137426 137426 
Apr 158577 138849 137811 137456 137426 137426 
May 158390 138897 137733 137426 137426 137426 
Jun 153980 138058 137576 137426 137426 137426 
Jul 151726 137916 137426 137426 137426 137426 
Aug 155110 138093 137567 137426 137426 137426 
Sep 162604 139387 137673 137426 137426 137426 
Oct 173181 141419 138970 137597 137426 137426 
Nov 174489 142014 139367 138322 137603 137426 
Dec 176698 142658 139992 137917 137478 137426 

 
Blade Minor 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 46960 14836 13723 13372 13372 13372 
Feb 41387 14213 13437 13372 13372 13372 
Mar 32138 13940 13429 13372 13372 13372 
Apr 28620 13436 13372 13372 13372 13372 
May 29532 13469 13372 13372 13372 13372 
Jun 25274 13372 13372 13372 13372 13372 
Jul 23830 13372 13372 13372 13372 13372 
Aug 26543 13372 13372 13372 13372 13372 
Sep 31592 13621 13372 13372 13372 13372 
Oct 42372 14297 13461 13372 13372 13372 
Nov 41780 14544 13611 13372 13372 13372 
Dec 46162 14596 13582 13372 13372 13372 
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Contactor/ Circuit Breaker/ 
Relay Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2001960 1933117 1923758 1920507 1919341 1918975 
Feb 1989770 1927934 1921502 1919770 1919250 1918956 
Mar 1975030 1924524 1921008 1919463 1919104 1918956 
Apr 1962638 1922272 1919909 1919057 1918930 1918904 
May 1964774 1922764 1919843 1918961 1918904 1918904 
Jun 1958360 1921134 1919438 1919081 1918904 1918904 
Jul 1950515 1920972 1919128 1918904 1918904 1918904 
Aug 1957906 1921545 1919375 1918904 1918904 1918904 
Sep 1973818 1923760 1920011 1918930 1918904 1918904 
Oct 1991824 1929230 1922081 1919601 1918904 1918904 
Nov 1993840 1929598 1922451 1920245 1919406 1918904 
Dec 2002167 1931218 1923371 1920103 1919161 1918904 

 
Contactor/ Circuit Breaker/ 

Relay Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 177950 142235 139915 138269 137736 137639 
Feb 171784 140512 138635 138074 137650 137639 
Mar 161909 139811 138590 137831 137639 137639 
Apr 157698 138717 137887 137639 137639 137639 
May 157956 138762 137838 137639 137639 137639 
Jun 153313 138141 137736 137639 137639 137639 
Jul 151462 137984 137639 137639 137639 137639 
Aug 154532 138120 137684 137639 137639 137639 
Sep 161415 139123 137845 137639 137639 137639 
Oct 171889 141078 138850 137710 137639 137639 
Nov 172820 141470 139230 138350 137698 137639 
Dec 175398 141813 139726 137967 137639 137639 

 
Contactor/ Circuit Breaker/ 

Relay Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 42876 13939 13334 13282 13282 13282 
Feb 37143 13593 13282 13282 13282 13282 
Mar 29113 13403 13282 13282 13282 13282 
Apr 26553 13282 13282 13282 13282 13282 
May 27415 13282 13282 13282 13282 13282 
Jun 23215 13282 13282 13282 13282 13282 
Jul 22350 13282 13282 13282 13282 13282 
Aug 24403 13282 13282 13282 13282 13282 
Sep 29155 13294 13282 13282 13282 13282 
Oct 38103 13641 13282 13282 13282 13282 
Nov 38188 13774 13282 13282 13282 13282 
Dec 41183 13749 13294 13282 13282 13282 
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Controls 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 1598442 1529585 1524802 1523680 1523551 1523551 
Feb 1586638 1526765 1524051 1523582 1523551 1523551 
Mar 1571458 1525334 1523929 1523551 1523551 1523551 
Apr 1562396 1524432 1523584 1523551 1523551 1523551 
May 1562883 1524726 1523570 1523551 1523551 1523551 
Jun 1556820 1524074 1523551 1523551 1523551 1523551 
Jul 1551434 1524066 1523551 1523551 1523551 1523551 
Aug 1557503 1524327 1523551 1523551 1523551 1523551 
Sep 1571829 1525306 1523642 1523551 1523551 1523551 
Oct 1587271 1527034 1524117 1523551 1523551 1523551 
Nov 1589951 1527376 1524369 1523730 1523551 1523551 
Dec 1597980 1528137 1524475 1523582 1523551 1523551 

 
Controls 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 129052 96024 94590 93513 93329 93329 
Feb 123891 94907 93739 93394 93329 93329 
Mar 114673 94465 93698 93341 93329 93329 
Apr 110825 93776 93362 93329 93329 93329 
May 111624 93818 93329 93329 93329 93329 
Jun 106846 93506 93329 93329 93329 93329 
Jul 105340 93466 93329 93329 93329 93329 
Aug 108391 93510 93329 93329 93329 93329 
Sep 113860 94079 93341 93329 93329 93329 
Oct 124617 95176 93901 93329 93329 93329 
Nov 124262 95482 94088 93628 93329 93329 
Dec 127376 95524 94196 93412 93329 93329 

 
Controls 

Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 46053 14728 13713 13455 13455 13455 
Feb 40640 14150 13485 13455 13455 13455 
Mar 31741 13916 13504 13455 13455 13455 
Apr 28185 13485 13455 13455 13455 13455 
May 29126 13506 13455 13455 13455 13455 
Jun 24981 13455 13455 13455 13455 13455 
Jul 23689 13455 13455 13455 13455 13455 
Aug 26343 13455 13455 13455 13455 13455 
Sep 31338 13621 13455 13455 13455 13455 
Oct 41394 14228 13500 13455 13455 13455 
Nov 41145 14441 13621 13455 13455 13455 
Dec 45407 14450 13587 13455 13455 13455 
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Electrical  Components 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 1980616 1913262 1905910 1903888 1903317 1903259 
Feb 1969274 1908766 1904530 1903663 1903298 1903259 
Mar 1955586 1906627 1904301 1903458 1903259 1903259 
Apr 1944890 1905159 1903636 1903259 1903259 1903259 
May 1946044 1905649 1903608 1903259 1903259 1903259 
Jun 1939619 1904570 1903393 1903259 1903259 1903259 
Jul 1932361 1904456 1903285 1903259 1903259 1903259 
Aug 1940012 1904869 1903347 1903259 1903259 1903259 
Sep 1954850 1906461 1903765 1903259 1903259 1903259 
Oct 1971625 1909220 1904792 1903503 1903259 1903259 
Nov 1972875 1909943 1905092 1904010 1903405 1903259 
Dec 1980895 1911820 1905538 1903744 1903259 1903259 

 
Electrical  Components 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 128803 95775 94342 93264 93080 93080 
Feb 123643 94658 93490 93145 93080 93080 
Mar 114424 94217 93450 93092 93080 93080 
Apr 110576 93527 93113 93080 93080 93080 
May 111376 93569 93080 93080 93080 93080 
Jun 106598 93258 93080 93080 93080 93080 
Jul 105092 93217 93080 93080 93080 93080 
Aug 108142 93262 93080 93080 93080 93080 
Sep 113612 93830 93092 93080 93080 93080 
Oct 124369 94927 93652 93080 93080 93080 
Nov 124013 95234 93839 93379 93080 93080 
Dec 127127 95276 93947 93163 93080 93080 

 
Electrical  Components 

Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 43725 13968 13290 13180 13180 13180 
Feb 37727 13566 13180 13180 13180 13180 
Mar 29747 13362 13180 13180 13180 13180 
Apr 26793 13180 13180 13180 13180 13180 
May 27662 13180 13180 13180 13180 13180 
Jun 23390 13180 13180 13180 13180 13180 
Jul 22561 13180 13180 13180 13180 13180 
Aug 24821 13180 13180 13180 13180 13180 
Sep 29743 13211 13180 13180 13180 13180 
Oct 39063 13637 13180 13180 13180 13180 
Nov 38810 13795 13206 13180 13180 13180 
Dec 41947 13780 13203 13180 13180 13180 
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Gearbox 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 3785907 3717064 3707706 3704455 3703289 3702923 
Feb 3773718 3711882 3705449 3703718 3703198 3702904 
Mar 3758978 3708472 3704956 3703411 3703052 3702904 
Apr 3746586 3706220 3703857 3703005 3702878 3702852 
May 3748722 3706712 3703791 3702909 3702852 3702852 
Jun 3742308 3705082 3703386 3703029 3702852 3702852 
Jul 3734463 3704920 3703076 3702852 3702852 3702852 
Aug 3741854 3705493 3703323 3702852 3702852 3702852 
Sep 3757766 3707708 3703959 3702878 3702852 3702852 
Oct 3775772 3713178 3706029 3703549 3702852 3702852 
Nov 3777935 3713546 3706399 3704193 3703354 3702852 
Dec 3786171 3715166 3707318 3704051 3703109 3702852 

 
Gearbox 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 180912 144179 141510 139362 138668 138387 
Feb 174538 142013 139733 139071 138519 138368 
Mar 164597 141164 139794 138642 138419 138368 
Apr 159739 139932 138801 138424 138368 138368 
May 159822 140054 138739 138379 138368 138368 
Jun 155210 139067 138594 138368 138368 138368 
Jul 152790 138908 138394 138368 138368 138368 
Aug 156313 139172 138587 138368 138368 138368 
Sep 164219 140444 138678 138368 138368 138368 
Oct 174967 142724 140217 138591 138368 138368 
Nov 176158 143452 140483 139357 138580 138368 
Dec 178231 144137 141124 138937 138469 138368 

 
Gearbox 

Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 45978 14653 13638 13380 13380 13380 
Feb 40565 14075 13410 13380 13380 13380 
Mar 31666 13841 13429 13380 13380 13380 
Apr 28110 13410 13380 13380 13380 13380 
May 29051 13431 13380 13380 13380 13380 
Jun 24906 13380 13380 13380 13380 13380 
Jul 23614 13380 13380 13380 13380 13380 
Aug 26268 13380 13380 13380 13380 13380 
Sep 31263 13546 13380 13380 13380 13380 
Oct 41319 14153 13425 13380 13380 13380 
Nov 41070 14366 13546 13380 13380 13380 
Dec 45332 14375 13512 13380 13380 13380 
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Generator 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2659227 2591459 2583564 2581029 2580369 2580120 
Feb 2647226 2586708 2581766 2580681 2580177 2580120 
Mar 2633535 2584244 2581509 2580399 2580132 2580120 
Apr 2622551 2582421 2580705 2580147 2580120 2580120 
May 2623659 2582982 2580586 2580120 2580120 2580120 
Jun 2617565 2581761 2580390 2580120 2580120 2580120 
Jul 2609997 2581603 2580237 2580120 2580120 2580120 
Aug 2617614 2582039 2580303 2580120 2580120 2580120 
Sep 2632946 2583743 2580844 2580120 2580120 2580120 
Oct 2650144 2587300 2582125 2580543 2580120 2580120 
Nov 2651536 2588331 2582482 2581098 2580381 2580120 
Dec 2659707 2589982 2583203 2580871 2580160 2580120 

 
Generator 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 183283 145807 142305 139992 139212 138854 
Feb 176257 142938 140543 139561 139129 138835 
Mar 166246 141953 140562 139178 138923 138809 
Apr 160959 140618 139435 138915 138783 138783 
May 161098 140822 139321 138809 138783 138783 
Jun 156188 139697 139144 138813 138783 138783 
Jul 153848 139470 138874 138783 138783 138783 
Aug 157224 139801 139071 138783 138783 138783 
Sep 165373 141315 139321 138794 138783 138783 
Oct 176770 143901 140958 139195 138783 138783 
Nov 178020 144719 141313 140076 139139 138783 
Dec 181182 145385 141799 139599 139040 138783 

 
Generator 

Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 45508 14461 13573 13357 13357 13357 
Feb 39632 13960 13357 13357 13357 13357 
Mar 31110 13723 13368 13357 13357 13357 
Apr 27805 13357 13357 13357 13357 13357 
May 28570 13368 13357 13357 13357 13357 
Jun 24439 13357 13357 13357 13357 13357 
Jul 23337 13357 13357 13357 13357 13357 
Aug 25807 13357 13357 13357 13357 13357 
Sep 30843 13465 13357 13357 13357 13357 
Oct 40338 14018 13357 13357 13357 13357 
Nov 40378 14214 13459 13357 13357 13357 
Dec 44080 14229 13425 13357 13357 13357 
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Grease/ Oil/ Cooling 
Liq. Major Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 176996 141734 139578 138067 137581 137529 
Feb 171004 140064 138391 137877 137529 137529 
Mar 161141 139499 138368 137684 137529 137529 
Apr 157179 138461 137751 137529 137529 137529 
May 157321 138524 137684 137529 137529 137529 
Jun 152708 137953 137600 137529 137529 137529 
Jul 150723 137827 137529 137529 137529 137529 
Aug 153973 137962 137555 137529 137529 137529 
Sep 160848 138792 137698 137529 137529 137529 
Oct 171231 140695 138621 137588 137529 137529 
Nov 171841 140955 138926 138147 137555 137529 
Dec 175020 141276 139362 137775 137529 137529 

 
Grease/ Oil/ Cooling 

Liq. Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 42580 13643 13038 12986 12986 12986 
Feb 36847 13297 12986 12986 12986 12986 
Mar 28817 13107 12986 12986 12986 12986 
Apr 26257 12986 12986 12986 12986 12986 
May 27119 12986 12986 12986 12986 12986 
Jun 22919 12986 12986 12986 12986 12986 
Jul 22054 12986 12986 12986 12986 12986 
Aug 24107 12986 12986 12986 12986 12986 
Sep 28859 12998 12986 12986 12986 12986 
Oct 37807 13345 12986 12986 12986 12986 
Nov 37893 13478 12986 12986 12986 12986 
Dec 40871 13453 12998 12986 12986 12986 

 
Heaters/ Coolers 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 128227 95200 93766 92688 92505 92505 
Feb 123067 94083 92914 92569 92505 92505 
Mar 113849 93641 92874 92516 92505 92505 
Apr 110000 92952 92538 92505 92505 92505 
May 110800 92993 92505 92505 92505 92505 
Jun 106022 92682 92505 92505 92505 92505 
Jul 104516 92641 92505 92505 92505 92505 
Aug 107567 92686 92505 92505 92505 92505 
Sep 113036 93254 92516 92505 92505 92505 
Oct 123793 94352 93077 92505 92505 92505 
Nov 123437 94658 93264 92804 92505 92505 
Dec 126552 94700 93372 92587 92505 92505 
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Heaters/ Coolers 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 44191 14433 13756 13646 13646 13646 
Feb 38197 14032 13646 13646 13646 13646 
Mar 30213 13827 13646 13646 13646 13646 
Apr 27259 13646 13646 13646 13646 13646 
May 28127 13646 13646 13646 13646 13646 
Jun 23856 13646 13646 13646 13646 13646 
Jul 23027 13646 13646 13646 13646 13646 
Aug 25286 13646 13646 13646 13646 13646 
Sep 30208 13676 13646 13646 13646 13646 
Oct 39529 14103 13646 13646 13646 13646 
Nov 39276 14260 13672 13646 13646 13646 
Dec 42412 14245 13669 13646 13646 13646 

 
Hub 

Replacement 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2268843 2200000 2190641 2187390 2186225 2185858 
Feb 2256653 2194817 2188385 2186653 2186133 2185839 
Mar 2241913 2191407 2187891 2186346 2185987 2185839 
Apr 2229522 2189156 2186792 2185940 2185813 2185787 
May 2231657 2189647 2186726 2185844 2185787 2185787 
Jun 2225243 2188017 2186321 2185964 2185787 2185787 
Jul 2217398 2187855 2186011 2185787 2185787 2185787 
Aug 2224789 2188428 2186259 2185787 2185787 2185787 
Sep 2240701 2190643 2186894 2185813 2185787 2185787 
Oct 2258707 2196113 2188964 2186484 2185787 2185787 
Nov 2260723 2196481 2189334 2187128 2186289 2185787 
Dec 2269050 2198101 2190254 2186987 2186044 2185787 

 
Hub Major 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 243489 202942 196056 188957 186392 185568 
Feb 232915 196857 190518 188255 187042 185376 
Mar 221116 193944 189605 187362 186166 185042 
Apr 214020 189983 186954 186225 185273 184638 
May 213818 189826 187442 185376 184743 184560 
Jun 208585 188300 186862 185334 184629 184560 
Jul 204953 187419 185560 185075 184743 184560 
Aug 209125 188383 186469 184861 184658 184560 
Sep 220022 191316 187087 185798 184810 184560 
Oct 233923 197939 191973 186977 185490 184598 
Nov 236269 199216 191973 189034 186884 184950 
Dec 242397 201613 192691 188461 186366 185568 
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Hub Minor 
Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 48421 15320 14144 13657 13645 13645 
Feb 42418 14618 13773 13645 13645 13645 
Mar 32998 14321 13759 13645 13645 13645 
Apr 29310 13766 13645 13645 13645 13645 
May 30303 13801 13645 13645 13645 13645 
Jun 25850 13671 13645 13645 13645 13645 
Jul 24439 13645 13645 13645 13645 13645 
Aug 27049 13657 13645 13645 13645 13645 
Sep 32554 13967 13645 13645 13645 13645 
Oct 43707 14711 13808 13645 13645 13645 
Nov 43115 14972 13978 13683 13645 13645 
Dec 47585 15042 13962 13645 13645 13645 

 
Other Components 

Replacement 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 1989081 1920273 1910915 1907664 1906498 1906132 
Feb 1976895 1915091 1908658 1906927 1906407 1906113 
Mar 1962187 1911681 1908165 1906620 1906261 1906113 
Apr 1949795 1909429 1907066 1906214 1906087 1906061 
May 1951931 1909921 1907000 1906118 1906061 1906061 
Jun 1945517 1908291 1906595 1906238 1906061 1906061 
Jul 1937672 1908129 1906285 1906061 1906061 1906061 
Aug 1945063 1908702 1906532 1906061 1906061 1906061 
Sep 1960975 1910917 1907168 1906087 1906061 1906061 
Oct 1978981 1916387 1909238 1906758 1906061 1906061 
Nov 1980922 1916755 1909608 1907402 1906563 1906061 
Dec 1989177 1918375 1910528 1907260 1906318 1906061 

 
Other Components 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 179899 143537 140962 139061 138405 138183 
Feb 173701 141615 139406 138810 138266 138183 
Mar 163734 140805 139459 138446 138183 138183 
Apr 159334 139606 138568 138214 138183 138183 
May 159147 139654 138490 138183 138183 138183 
Jun 154737 138815 138333 138183 138183 138183 
Jul 152483 138673 138183 138183 138183 138183 
Aug 155867 138850 138324 138183 138183 138183 
Sep 163361 140144 138431 138183 138183 138183 
Oct 173938 142176 139727 138354 138183 138183 
Nov 175077 142771 140124 139079 138360 138183 
Dec 177343 143415 140749 138675 138235 138183 
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Other Components 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 43534 13777 13099 12989 12989 12989 
Feb 37525 13375 12989 12989 12989 12989 
Mar 29556 13171 12989 12989 12989 12989 
Apr 26602 12989 12989 12989 12989 12989 
May 27471 12989 12989 12989 12989 12989 
Jun 23199 12989 12989 12989 12989 12989 
Jul 22370 12989 12989 12989 12989 12989 
Aug 24630 12989 12989 12989 12989 12989 
Sep 29552 13020 12989 12989 12989 12989 
Oct 38872 13446 12989 12989 12989 12989 
Nov 38619 13604 13015 12989 12989 12989 
Dec 41756 13589 13012 12989 12989 12989 

 
Pitch/ Hyd 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2672347 2603592 2594234 2590983 2589817 2589451 
Feb 2660154 2598410 2591977 2590246 2589726 2589432 
Mar 2645506 2595000 2591484 2589939 2589580 2589432 
Apr 2633114 2592748 2590385 2589533 2589406 2589380 
May 2635250 2593240 2590319 2589437 2589380 2589380 
Jun 2628836 2591610 2589914 2589557 2589380 2589380 
Jul 2620991 2591448 2589603 2589380 2589380 2589380 
Aug 2628382 2592020 2589851 2589380 2589380 2589380 
Sep 2644294 2594236 2590486 2589406 2589380 2589380 
Oct 2662300 2599706 2592557 2590077 2589380 2589380 
Nov 2664195 2600073 2592927 2590721 2589882 2589380 
Dec 2672496 2601694 2593846 2590579 2589637 2589380 

 
Pitch/ Hyd 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 177412 141698 139377 137731 137198 137101 
Feb 171247 139974 138097 137537 137112 137101 
Mar 161372 139274 138052 137294 137101 137101 
Apr 157160 138179 137349 137101 137101 137101 
May 157419 138225 137301 137101 137101 137101 
Jun 152775 137604 137198 137101 137101 137101 
Jul 150925 137447 137101 137101 137101 137101 
Aug 153995 137582 137146 137101 137101 137101 
Sep 160878 138586 137308 137101 137101 137101 
Oct 171352 140540 138312 137173 137101 137101 
Nov 172282 140932 138692 137812 137160 137101 
Dec 174855 141275 139189 137429 137101 137101 
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Pitch/ Hyd 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 47222 15098 13985 13634 13634 13634 
Feb 41649 14476 13700 13634 13634 13634 
Mar 32400 14203 13691 13634 13634 13634 
Apr 28882 13699 13634 13634 13634 13634 
May 29794 13731 13634 13634 13634 13634 
Jun 25536 13634 13634 13634 13634 13634 
Jul 24092 13634 13634 13634 13634 13634 
Aug 26805 13634 13634 13634 13634 13634 
Sep 31854 13884 13634 13634 13634 13634 
Oct 42634 14560 13723 13634 13634 13634 
Nov 42042 14806 13873 13634 13634 13634 
Dec 46425 14858 13844 13634 13634 13634 

 
Power Supply/ Converter 

Replacement 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2650105 2581262 2571903 2568652 2567487 2567120 
Feb 2637915 2576079 2569647 2567915 2567395 2567101 
Mar 2623175 2572669 2569153 2567608 2567249 2567101 
Apr 2610784 2570418 2568054 2567202 2567075 2567049 
May 2612919 2570909 2567988 2567106 2567049 2567049 
Jun 2606505 2569279 2567583 2567226 2567049 2567049 
Jul 2598660 2569117 2567273 2567049 2567049 2567049 
Aug 2606051 2569690 2567521 2567049 2567049 2567049 
Sep 2621963 2571905 2568156 2567075 2567049 2567049 
Oct 2639969 2577375 2570226 2567746 2567049 2567049 
Nov 2641910 2577743 2570596 2568390 2567551 2567049 
Dec 2650228 2579363 2571516 2568249 2567306 2567049 

 
Power Supply/Converter 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 131357 98329 96895 95818 95634 95634 
Feb 126197 97212 96044 95699 95634 95634 
Mar 116978 96770 96003 95646 95634 95634 
Apr 113130 96081 95667 95634 95634 95634 
May 113930 96123 95634 95634 95634 95634 
Jun 109151 95812 95634 95634 95634 95634 
Jul 107645 95771 95634 95634 95634 95634 
Aug 110696 95815 95634 95634 95634 95634 
Sep 116165 96384 95646 95634 95634 95634 
Oct 126923 97481 96206 95634 95634 95634 
Nov 126567 97788 96393 95933 95634 95634 
Dec 129681 97829 96501 95717 95634 95634 
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Power Supply/ Converter 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 45588 14541 13653 13437 13437 13437 
Feb 39712 14040 13437 13437 13437 13437 
Mar 31190 13803 13448 13437 13437 13437 
Apr 27885 13437 13437 13437 13437 13437 
May 28650 13448 13437 13437 13437 13437 
Jun 24519 13437 13437 13437 13437 13437 
Jul 23417 13437 13437 13437 13437 13437 
Aug 25887 13437 13437 13437 13437 13437 
Sep 30923 13545 13437 13437 13437 13437 
Oct 40418 14098 13437 13437 13437 13437 
Nov 40458 14294 13539 13437 13437 13437 
Dec 44160 14309 13505 13437 13437 13437 

 
Pumps/ Motors 
Major Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 125122 93931 92817 92330 92318 92318 
Feb 119991 93239 92446 92318 92318 92318 
Mar 111498 92956 92432 92318 92318 92318 
Apr 107972 92440 92318 92318 92318 92318 
May 108934 92474 92318 92318 92318 92318 
Jun 104523 92344 92318 92318 92318 92318 
Jul 103112 92318 92318 92318 92318 92318 
Aug 105722 92330 92318 92318 92318 92318 
Sep 111227 92610 92318 92318 92318 92318 
Oct 121013 93370 92481 92318 92318 92318 
Nov 120684 93568 92651 92356 92318 92318 
Dec 123095 93692 92635 92318 92318 92318 

 
Pumps/ Motors 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 42652 13715 13111 13058 13058 13058 
Feb 36919 13369 13058 13058 13058 13058 
Mar 28890 13180 13058 13058 13058 13058 
Apr 26329 13058 13058 13058 13058 13058 
May 27191 13058 13058 13058 13058 13058 
Jun 22991 13058 13058 13058 13058 13058 
Jul 22126 13058 13058 13058 13058 13058 
Aug 24179 13058 13058 13058 13058 13058 
Sep 28931 13070 13058 13058 13058 13058 
Oct 37879 13418 13058 13058 13058 13058 
Nov 37965 13550 13058 13058 13058 13058 
Dec 40912 13525 13070 13058 13058 13058 

 
Safety Major 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 123878 94428 93575 93367 93367 93367 
Feb 119199 93887 93367 93367 93367 93367 
Mar 111120 93643 93378 93367 93367 93367 
Apr 107815 93367 93367 93367 93367 93367 
May 108556 93378 93367 93367 93367 93367 
Jun 104449 93367 93367 93367 93367 93367 
Jul 103347 93367 93367 93367 93367 93367 
Aug 105817 93367 93367 93367 93367 93367 
Sep 110809 93455 93367 93367 93367 93367 
Oct 119831 93983 93367 93367 93367 93367 
Nov 119540 94059 93468 93367 93367 93367 
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Dec 121650 94189 93435 93367 93367 93367 
 

Safety Minor 
Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 40475 13047 12665 12665 12665 12665 
Feb 35156 12803 12665 12665 12665 12665 
Mar 27687 12716 12665 12665 12665 12665 
Apr 25062 12665 12665 12665 12665 12665 
May 26002 12665 12665 12665 12665 12665 
Jun 21679 12665 12665 12665 12665 12665 
Jul 20974 12665 12665 12665 12665 12665 
Aug 22882 12665 12665 12665 12665 12665 
Sep 27305 12665 12665 12665 12665 12665 
Oct 35917 12868 12665 12665 12665 12665 
Nov 36306 12938 12665 12665 12665 12665 
Dec 38692 12913 12665 12665 12665 12665 

 
Sensors Major 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 122038 93133 92393 92244 92244 92244 
Feb 117457 92682 92244 92244 92244 92244 
Mar 109434 92440 92244 92244 92244 92244 
Apr 106205 92244 92244 92244 92244 92244 
May 107085 92244 92244 92244 92244 92244 
Jun 102909 92244 92244 92244 92244 92244 
Jul 101904 92244 92244 92244 92244 92244 
Aug 104419 92244 92244 92244 92244 92244 
Sep 109224 92286 92244 92244 92244 92244 
Oct 117788 92759 92244 92244 92244 92244 
Nov 117765 92862 92296 92244 92244 92244 
Dec 119580 92926 92286 92244 92244 92244 

 
Sensors Minor 

Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 46111 14787 13772 13513 13513 13513 
Feb 40698 14209 13544 13513 13513 13513 
Mar 31799 13975 13562 13513 13513 13513 
Apr 28243 13544 13513 13513 13513 13513 
May 29184 13565 13513 13513 13513 13513 
Jun 25039 13513 13513 13513 13513 13513 
Jul 23747 13513 13513 13513 13513 13513 
Aug 26401 13513 13513 13513 13513 13513 
Sep 31396 13679 13513 13513 13513 13513 
Oct 41452 14287 13559 13513 13513 13513 
Nov 41203 14500 13679 13513 13513 13513 
Dec 45469 14508 13645 13513 13513 13513 

 
Service Items 
Minor Repair  

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 45428 14381 13493 13277 13277 13277 
Feb 39552 13880 13277 13277 13277 13277 
Mar 31030 13643 13288 13277 13277 13277 
Apr 27725 13277 13277 13277 13277 13277 
May 28490 13288 13277 13277 13277 13277 
Jun 24359 13277 13277 13277 13277 13277 
Jul 23257 13277 13277 13277 13277 13277 
Aug 25727 13277 13277 13277 13277 13277 
Sep 30763 13385 13277 13277 13277 13277 
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Oct 40258 13938 13277 13277 13277 13277 
Nov 40298 14134 13379 13277 13277 13277 
Dec 44000 14149 13345 13277 13277 13277 

 
Tower/ Foundation 

Major Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 116507 90197 89870 89870 89870 89870 
Feb 112047 89987 89870 89870 89870 89870 
Mar 104892 89882 89870 89870 89870 89870 
Apr 102267 89870 89870 89870 89870 89870 
May 103202 89870 89870 89870 89870 89870 
Jun 98884 89870 89870 89870 89870 89870 
Jul 98179 89870 89870 89870 89870 89870 
Aug 100087 89870 89870 89870 89870 89870 
Sep 104510 89870 89870 89870 89870 89870 
Oct 112568 90037 89870 89870 89870 89870 
Nov 112406 90087 89870 89870 89870 89870 
Dec 114195 90091 89870 89870 89870 89870 

 
Tower/ Foundation 

Minor Repair 
Total Cost 

CM [€] 
Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 44167 14410 13732 13622 13622 13622 
Feb 38190 14009 13622 13622 13622 13622 
Mar 30189 13804 13622 13622 13622 13622 
Apr 27235 13622 13622 13622 13622 13622 
May 28104 13622 13622 13622 13622 13622 
Jun 23832 13622 13622 13622 13622 13622 
Jul 23003 13622 13622 13622 13622 13622 
Aug 25263 13622 13622 13622 13622 13622 
Sep 30185 13653 13622 13622 13622 13622 
Oct 39506 14079 13622 13622 13622 13622 
Nov 39252 14237 13649 13622 13622 13622 
Dec 42389 14222 13645 13622 13622 13622 

 
Transformer 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2492520 2423994 2414635 2411384 2410219 2409852 
Feb 2480555 2418811 2412379 2410647 2410127 2409833 
Mar 2465907 2415401 2411885 2410340 2409982 2409833 
Apr 2453516 2413150 2410786 2409934 2409807 2409781 
May 2455651 2413641 2410720 2409838 2409781 2409781 
Jun 2449237 2412011 2410315 2409958 2409781 2409781 
Jul 2441392 2411849 2410005 2409781 2409781 2409781 
Aug 2448783 2412422 2410253 2409781 2409781 2409781 
Sep 2464695 2414637 2410888 2409807 2409781 2409781 
Oct 2482701 2420107 2412958 2410478 2409781 2409781 
Nov 2484371 2420475 2413328 2411122 2410283 2409781 
Dec 2492897 2422095 2414248 2410981 2410039 2409781 

 
Transformer 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 45761 14714 13825 13609 13609 13609 
Feb 39884 14212 13609 13609 13609 13609 
Mar 31362 13975 13621 13609 13609 13609 
Apr 28057 13609 13609 13609 13609 13609 
May 28823 13621 13609 13609 13609 13609 
Jun 24691 13609 13609 13609 13609 13609 
Jul 23590 13609 13609 13609 13609 13609 
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Aug 26060 13609 13609 13609 13609 13609 
Sep 31095 13717 13609 13609 13609 13609 
Oct 40591 14271 13609 13609 13609 13609 
Nov 40655 14467 13711 13609 13609 13609 
Dec 44332 14481 13677 13609 13609 13609 

 
Yaw System 
Replacement 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 2362601 2293793 2284435 2281184 2280018 2279652 
Feb 2350415 2288611 2282178 2280447 2279927 2279633 
Mar 2335707 2285201 2281685 2280140 2279781 2279633 
Apr 2323315 2282949 2280586 2279734 2279607 2279581 
May 2325451 2283441 2280520 2279638 2279581 2279581 
Jun 2319037 2281811 2280115 2279758 2279581 2279581 
Jul 2311192 2281649 2279805 2279581 2279581 2279581 
Aug 2318583 2282222 2280052 2279581 2279581 2279581 
Sep 2334495 2284437 2280688 2279607 2279581 2279581 
Oct 2352501 2289907 2282758 2280278 2279581 2279581 
Nov 2354442 2290275 2283128 2280922 2280083 2279581 
Dec 2362697 2291895 2284048 2280780 2279838 2279581 

 
Yaw System 
Major Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 178705 142867 140285 138608 138011 137857 
Feb 172723 141149 138965 138400 137895 137857 
Mar 162688 140284 138946 138104 137857 137857 
Apr 158484 139110 138151 137868 137857 137857 
May 158492 139146 138107 137857 137857 137857 
Jun 153986 138416 137992 137857 137857 137857 
Jul 152034 138257 137857 137857 137857 137857 
Aug 155169 138446 137935 137857 137857 137857 
Sep 162432 139522 138102 137857 137857 137857 
Oct 172795 141594 139219 137954 137857 137857 
Nov 174080 142079 139623 138661 137973 137857 
Dec 176229 142515 140219 138275 137883 137857 

 
Yaw System 
Minor Repair 

Total Cost 
CM [€] 

Total Cost 
PdM1 [€] 

Total Cost 
PdM2 [€] 

Total Cost 
PdM3 [€] 

Total Cost 
PdM4 [€] 

Total Cost 
PdM5 [€] 

Jan 43765 14008 13330 13220 13220 13220 
Feb 37767 13606 13220 13220 13220 13220 
Mar 29787 13402 13220 13220 13220 13220 
Apr 26833 13220 13220 13220 13220 13220 
May 27702 13220 13220 13220 13220 13220 
Jun 23430 13220 13220 13220 13220 13220 
Jul 22601 13220 13220 13220 13220 13220 
Aug 24861 13220 13220 13220 13220 13220 
Sep 29783 13251 13220 13220 13220 13220 
Oct 39103 13677 13220 13220 13220 13220 
Nov 38850 13835 13246 13220 13220 13220 
Dec 41987 13820 13243 13220 13220 13220 

  


